Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 31(15): 155705, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31846952

RESUMO

The interfacial Dzyaloshinskii-Moriya interaction (iDMI) is attracting great interest for spintronics. An iDMI constant larger than 3 mJ m-2 is expected to minimize the size of skyrmions and to optimize the domain-wall dynamics. In this study, we experimentally demonstrate a giant iDMI in Pt/Co/X/MgO ultra-thin film structures with perpendicular magnetization. The iDMI constants were measured using a field-driven creep regime domain expansion method. The enhancement of iDMI with an atomically thin insertion of Ta and Mg is comprehensively understood with the help of ab-initio calculations. Thermal annealing has been used to crystallize the MgO thin layer to improve the tunneling magneto-resistance (TMR), but interestingly it also provides a further increase of the iDMI constant. An increase of the iDMI constant of up to 3.3 mJ m-2 is shown, which is promising for the scaling down of skyrmion electronics.

2.
Nanoscale ; 10(25): 12062-12067, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29911217

RESUMO

The interfacial Dzyaloshinskii-Moriya interaction (DMI) in ferromagnetic/heavy metal ultra-thin film structures has attracted a lot of attention thanks to its capability to stabilize Néel-type domain walls (DWs) and magnetic skyrmions for the realization of non-volatile memory and logic devices. In this study, we demonstrate that magnetic properties in perpendicularly magnetized Ta/Pt/Co/MgO/Pt heterostructures, such as magnetization and DMI, can be significantly influenced by the MgO thickness. To avoid the excessive oxidation of Co, an ultrathin Mg layer is inserted to improve the quality of the Co-MgO interface. By using field-driven domain wall expansion in the creep regime, we find that non-monotonic tendencies of the DMI field appear when changing the thickness of MgO. With the insertion of a monatomic Mg layer, the strength of the DMI could reach a high level and saturate. We conjecture that the efficient control of the DMI is a result of subtle changes of both Pt/Co and Co/MgO interfaces, which provides a method to optimize the design of ultra-thin structures achieving skyrmion electronics.

3.
Nanotechnology ; 29(36): 365502, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-29916819

RESUMO

Magnetic sensors based on magnetoresistance effects have promising application prospects due to their excellent sensitivity and their advantages in terms of integration. However, the competition between higher sensitivity and a larger measuring range remains a problem. Here, we propose a novel mechanism for designing magnetoresistive sensors: probing the perpendicular field by detecting the expansion of the elastic magnetic domain wall in the free layer of a spin valve or a magnetic tunnel junction. The performances of devices based on this mechanism, such as the sensitivity and the measuring range, can be tuned by manipulating the geometry of the device. This can be achieved without changing the intrinsic properties of the material, thus promising a higher integration level and a better performance. The mechanism is theoretically explained based on the experimental results. Two examples are proposed and their functionality and performances are verified via a micromagnetic simulation.

4.
Sensors (Basel) ; 18(6)2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29874825

RESUMO

Since the discovery of the giant magnetoresistive (GMR) effect, GMR sensors have gained much attention in last decades due to their high sensitivity, small size, and low cost. The full Wheatstone-bridge-based GMR sensor is most useful in terms of the application point of view. However, its manufacturing process is usually complex. In this paper, we present an efficient and concise approach to fabricate a full Wheatstone-bridge-based angular GMR sensor by depositing one GMR film stack, utilizing simple patterned processes, and a concise post-annealing procedure based on a special layout. The angular GMR sensor is of good linear performance and achieves a sensitivity of 0.112 mV/V/Oe at the annealing temperature of 260 °C in the magnetic field range from -50 to +50 Oe. This work provides a design and method for GMR-sensor manufacturing that is easy for implementation and suitable for mass production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...