Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 26(15): 15229-15247, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30929171

RESUMO

Aeration by airflow technology is a reliable method to accelerate waste biodegradation and stabilization and hence shorten the aftercare period of a landfill. To simulate hydro-biochemical behaviors in this type of landfills, this study develops a model coupling multi-phase flow, multi-component transport and aerobic-anaerobic biodegradation using a computational fluid dynamics (CFD) method. The uniqueness of the model is that it can well describe the evolution of aerobic zone, anaerobic zone, and temperature during aeration and evaluate aeration efficiency considering aerobic and anaerobic biodegradation processes. After being verified using existing in situ and laboratory test results, the model is then employed to reveal the bio-stable zone development, aerobic biochemical reactions around vertical well (VW), and anaerobic reactions away from VW. With an increase in the initial organic matter content (0.1 to 0.4), the bio-stable zone expands at a decreasing speed but with all the horizontal ranges larger than 17 m after an intermittent aeration for 1000 days. When waste intrinsic permeability is equal or greater than 10-11 m2, aeration using a low pressure between 4 and 8 kPa is appropriate. The aeration efficiency would be underestimated if anaerobic biodegradation is neglected because products of anaerobic biodegradation would be oxidized more easily. A horizontal spacing of 17 m is suggested for aeration VWs with a vertical spacing of 10 m for screens. Since a lower aeration frequency can give greater aeration efficiency, a 20-day aeration/20-day leachate recirculation scenario is recommended considering the maximum temperature over a reasonable range. For wet landfills with low temperature, the proportion of aeration can be increased to 0.67 (20-day aeration/10-day leachate recirculation) or an even higher value.


Assuntos
Reatores Biológicos , Eliminação de Resíduos/métodos , Instalações de Eliminação de Resíduos/instrumentação , Aerobiose , Biodegradação Ambiental
2.
Environ Sci Pollut Res Int ; 25(15): 14614-14625, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29532374

RESUMO

A dual-permeability hydro-biodegradation model is developed to describe the leachate flow in municipal solid waste (MSW) and predict the long-term settlement induced by biodegradation in bioreactor landfills. The model is verified against Hydrus-1D and a recirculation experiment conducted in a full-scale landfill. Preferential flow and mass transfer between fissure and matrix can be reasonably modeled by the proposed model. A higher recirculation flow rate can speed up the stabilization process of landfill. However, too much recirculation leachate is not economical and environmental friendly. A stabilization speed index and a leachate utilization index are adopted to evaluate the stabilization speed of bioreactor landfill and utilization rate of leachate, respectively, and the optimal recirculation flow rate is estimated. A flow rate of q = 5 × 10-5-5 × 10-4 m/h (equivalent to recirculation intensity of Q = 15-150 L/tonwaste/year) is recommended for recirculation, which has been verified by the field data in numerous bioreactor landfills.


Assuntos
Reatores Biológicos , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/química , Biodegradação Ambiental , Modelos Teóricos , Permeabilidade , Eliminação de Resíduos , Resíduos Sólidos/análise
3.
Environ Sci Pollut Res Int ; 25(6): 5631-5642, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29222661

RESUMO

The most commonly used method of operating landfills more sustainably is to promote rapid biodegradation and stabilization of municipal solid waste (MSW) by leachate recirculation. The present study is an application of computational fluid dynamics (CFD) to the 3D modeling of leachate recirculation in bioreactor landfills using vertical wells. The objective is to model and investigate the hydrodynamic and biochemical behavior of MSW subject to leachate recirculation. The results indicate that the maximum recirculated leachate volume can be reached when vertical wells are set at the upper middle part of a landfill (H W/H T = 0.4), and increasing the screen length can be more helpful in enlarging the influence radius than increasing the well length (an increase in H S/H W from 0.4 to 0.6 results in an increase in influence radius from 6.5 to 7.7 m). The time to reach steady state of leachate recirculation decreases with the increase in pressure head; however, the time for leachate to drain away increases with the increase in pressure head. It also showed that methanogenic biomass inoculum of 1.0 kg/m3 can accelerate the volatile fatty acid depletion and increase the peak depletion rate to 2.7 × 10-6 kg/m3/s. The degradation-induced void change parameter exerts an influence on the processes of MSW biodegradation because a smaller parameter value results in a greater increase in void space.


Assuntos
Reatores Biológicos , Modelos Teóricos , Eliminação de Resíduos/métodos , Resíduos Sólidos/análise , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/análise , Biodegradação Ambiental
4.
Environ Sci Pollut Res Int ; 24(25): 20811-20817, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28791528

RESUMO

Leachate is a polluting liquid which may cause harmful effects on human health or the environment without a tightly control manner. The leachate management is an important part of the design and operation of bioreactor landfills. To detect the leachate distribution in Laogang Landfill, China, the measurement of electrical resistivity tomography (ERT) was carried out in three areas with different ages. ERT method proved to be an effective non-invasive geophysical method in bioreactor landfills, and the physical properties of waste samples obtained by boreholes were tested in a laboratory. The correlation between the resistivity and the moisture content was described by Archie's law. The result shows that the moisture content of fresh waste is inhomogeneous, while that of aged waste increases with depth. A pseudo 3D model of the moisture content was proposed to improve the understanding of leachate distribution and exhibit the accuracy of the ERT method.


Assuntos
Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/análise , Reatores Biológicos , China , Impedância Elétrica , Monitoramento Ambiental/instrumentação , Eliminação de Resíduos , Tomografia/métodos
5.
Waste Manag Res ; 35(10): 1072-1083, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28825359

RESUMO

Leachate recirculation in municipal solid waste (MSW) landfills operated as bioreactors offers significant economic and environmental benefits. Combined drainage blanket (DB)-horizontal trench (HT) systems can be an alternative to single conventional recirculation approaches and can have competitive advantages. The key objectives of this study are to investigate combined drainage blanket -horizontal trench systems, to analyze the effects of applying two recirculation systems on the leachate migration in landfills, and to estimate some key design parameters (e.g., the steady-state flow rate, the influence width, and the cumulative leachate volume). It was determined that an effective recirculation model should consist of a moderate horizontal trench injection pressure head and supplementary leachate recirculated through drainage blanket, with an objective of increasing the horizontal unsaturated hydraulic conductivity and thereby allowing more leachate to flow from the horizontal trench system in a horizontal direction. In addition, design charts for engineering application were established using a dimensionless variable formulation.


Assuntos
Reatores Biológicos , Eliminação de Resíduos , Resíduos Sólidos , Instalações de Eliminação de Resíduos
6.
Waste Manag Res ; 34(12): 1307-1315, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27821683

RESUMO

Bioreactor landfills use leachate recirculation to enhance the biodegradation of municipal solid waste and accelerate landfill stabilisation, which can provide significant environmental and economic benefits. Vertical wells are operated as a major method for leachate recirculation systems. The objectives of this article are to analyse the leachate migration in bioreactor landfills using vertical wells and to offer theoretical basis for the design of leachate recirculation systems. A three-dimensional numerical model was built using FLAC-3D, and this model can consider the saturated and unsaturated flow of leachate within anisotropic waste to reflect the actual conditions. First, main influence factors of leachate migration were analysed, including the vertical well height, hydraulic conductivity, and anisotropic coefficient, in a single-well recirculation system. Then, the effects of different configurations of a group-well system were studied and the optimal well spacing was obtained. Some key design parameters (e.g. the recirculation flow rate, volume of impact zone, radius of impact zone and time to reach steady state) were also evaluated. The results show that the hydraulic conductivity has a great impact on the optimal height of vertical wells and uniform configuration is the best option in terms of both volume of impact zone and time to reach steady state.


Assuntos
Reatores Biológicos , Modelos Teóricos , Eliminação de Resíduos/instrumentação , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água , Anisotropia , Desenho de Equipamento , Hidrologia/métodos , Eliminação de Resíduos/métodos , Reprodutibilidade dos Testes
7.
Environ Sci Pollut Res Int ; 22(12): 9067-79, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25874416

RESUMO

Leachate recirculation (LR) in municipal solid waste (MSW) landfills operated as bioreactors offers significant economic and environmental benefits. The subsurface application method of vertical wells is one of the most common LR techniques. The objective of this study was to develop a novel two-dimensional model of leachate recirculation using vertical wells. This novel method can describe leachate flow considering the effects of MSW settlement while also accounting separately for leachate flow in saturated and unsaturated zones. In this paper, a settlement model for MSW when considering the effects of compression and biodegradation on the MSW porosity was adopted. A numerical model was proposed using new governing equations for the saturated and unsaturated zones of a landfill. The following design parameters were evaluated by simulating the recirculated leachate volume and the influence zones of waste under steady-state flow conditions: (1) the effect of MSW settlement, (2) the effect of the initial void ratio, (3) the effect of the injected head, (4) the effect of the unit weight, (5) the effect of the biodegradation rate, and (6) the effect of the compression coefficient. The influence zones of LR when considering the effect of MSW settlement are smaller than those when neglecting the effect. The influence zones and LR volume increased with an increase in the injection pressure head and initial void ratio of MSW. The proposed method and the calculation results can provide important insight into the hydrological behavior of bioreactor landfills.


Assuntos
Reatores Biológicos , Modelos Teóricos , Eliminação de Resíduos/métodos , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Permeabilidade , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...