Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 265: 115512, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37757625

RESUMO

The application of plant growth-promoting rhizobacteria (PGPR) is a novel and an efficient strategy for improving soil degradation and productivity. However, the effect of PGPR on tobacco (Nicotiana tabacum L.) seedling growth under salt stress remains unclear. Here, microcosm experiments were designed to verify the effects of Bacillus cereus TC012 (BC), Bacillus methylotrophicus TC023 (BM), and Bacillus amyloliquefacien TC037 (BA) on tobacco grown in salt-affected soil. The results showed that BC, BM, and BA treatments significantly increased the height of tobacco plants by 38.65%, 91.94%, and 90.66%, respectively. Furthermore, the growth of various components of tobacco plant, such as stem girth, seedling biomass, carotenoid, and chlorophyll were stimulated in salt-affected soils. The changes in the salinity of the tobacco plant mostly relies on the improvement of proline, soluble protein, soluble sugar content, plant protective enzymatic activity, and K+/Na+ ratios. Increases in indole-3-acetic acid, zeatin riboside and gibberellic acid also promoted tobacco growth. Additionally, inoculation with PGPR enhanced the enzymatic activity of laccase, urease, neutral protease, acid phosphatase, and sucrase in soil samples and had positive effects on the physicochemical properties. The soil bacterial communities significantly improved after inoculation with PGPR. In particular, the relative abundance of Pseudomonas and Bacillus significantly increased. Overall, PGPR inoculation has great potential to alleviate salt damage in tobacco plants and may have far reaching benefits to the agricultural community.

2.
FEMS Microbiol Ecol ; 99(3)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36822630

RESUMO

Ralstonia pseudosolanacearum, previously known as R. solanacearum species complex (RSSC) phylotypes I and III, is a plant pathogenic bacterium causing significant yield losses in economical crops. In the May of 2020 and 2021, cigar tobacco bacterial wilt was first observed in fields in Danzhou, Hainan Province, China. A total of eight bacterial isolates were isolated and identified as R. pseudosolanacearum with race 1, biovar III by 16S rRNA gene sequencing, Biolog, and host identification. The amino acid sequence showed that Hainan strains and 15 R. pseudosolanacearum reference strains from flue-cured tobacco in Shandong and Guizhou Provinces, all belonged to RS1000 type containing the avrA gene, only Guizhou strains also had the popP1 gene. On the basis of phylotype-specific multiplex PCR amplification, mismatch repair gene and endoglucanase gene-base tree, Hainan strains were identified as phylotype I sequevar 70, and showed stronger pathogenic capabilities on three different varieties than those reference strains. This is the first report of cigar tobacco bacterial wilt caused by R. pseudosolanacearum sequevar 70. The results revealed the diversity of RSSC in Nicotiana tabacum in China and provided useful information regarding the epidemiology of cigar tobacco wilt disease, as well as the breeding for disease resistance in local cigar tobacco.


Assuntos
Ralstonia solanacearum , Produtos do Tabaco , Nicotiana/genética , Ralstonia solanacearum/genética , Virulência/genética , RNA Ribossômico 16S/genética , Melhoramento Vegetal , Ralstonia/genética , Variação Genética , Doenças das Plantas/microbiologia
3.
Front Microbiol ; 13: 854792, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602040

RESUMO

Ralstonia solanacearum species complex (RSSC) is a diverse group of plant pathogens that attack a wide range of hosts and cause devastating losses worldwide. In this study, we conducted a comprehensive analysis of 131 RSSC strains to detect their genetic diversity, pathogenicity, and evolution dynamics. Average nucleotide identity analysis was performed to explore the genomic relatedness among these strains, and finally obtained an open pangenome with 32,961 gene families. To better understand the diverse evolution and pathogenicity, we also conducted a series of analyses of virulence factors (VFs) and horizontal gene transfer (HGT) in the pangenome and at the single genome level. The distribution of VFs and mobile genetic elements (MGEs) showed significant differences among different groups and strains, which were consistent with the new nomenclatures of the RSSC with three distinct species. Further functional analysis showed that most HGT events conferred from Burkholderiales and played a great role in shaping the genomic plasticity and genetic diversity of RSSC genomes. Our work provides insights into the genetic polymorphism, evolution dynamics, and pathogenetic variety of RSSC and provides strong supports for the new taxonomic classification, as well as abundant resources for studying host specificity and pathogen emergence.

4.
J Agric Food Chem ; 67(47): 13139-13149, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31631665

RESUMO

Infusions prepared from raw pu-erh tea (RAPT) and ripened pu-erh tea (RIPT) showed remarkable aroma differences. Predominant odorants in RAPT and RIPT infusions were identified and compared by the combined use of gas chromatography-olfactometry, aroma extract dilution analysis, odor activity values (OAVs), and multivariate analysis. A total of 35 and 19 odorants (OAV > 1) were detected in RIPT and RAPT, respectively. Odorants in RAPT and RIPT are significantly different in both odor properties and aroma compound intensities. Overall, RAPT contained a complex variety of chemical classes with diverse odors and moderate odor intensities, while RIPT is dominated by structurally and organoleptically similar compounds with high potency. Specifically, stale and musty smelling methoxybenzenes contributed the most to RIPT, while floral-, sweet-, and woody-smelling terpene alcohols, terpene ketones, and phenolic compounds were the predominant odorants in RAPT. Orthogonal partial least squares discriminant analysis revealed that linalool, α-ionone, 1,2,4-trimethoxybenzene, 1,2,3-trimethoxy-5-methylbenzene, 1,2,3,4-tetramethoxybenzene, and 1,2,3-trimethoxybenzene underwent remarkable changes during pile fermentation and could be used as potential odor-active markers for RIPT and RAPT discrimination. The comprehensive aroma characterization of pu-erh tea and determination of the effect of pile fermentation on odorant alteration herein will provide guidance for pu-erh tea flavor quality control and evaluation.


Assuntos
Camellia sinensis/química , Aromatizantes/química , Odorantes/análise , Adulto , Feminino , Fermentação , Manipulação de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino , Olfatometria , Folhas de Planta/química , Olfato , Chá/química , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...