Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; : e0360922, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36912650

RESUMO

With the exploding growth of the global market for probiotics and the rapid awakening of public awareness to manage health by probiotic intervention, there is still an active debate about whether the consumption of probiotics is beneficial for nonpatients, which is due to the lack of systematic analysis based on time series multiomics data sets. In this study, we recruited 100 adults from a college in China and performed a random case-control study by using a probiotic (Lacticaseibacillus rhamnosus Probio-M9) as an intervention for 6 weeks, aiming to achieve a comprehensive evaluation and understanding of the beneficial effect of Probio-M9 consumption. By testing advanced blood immunity indicators, sequencing the gut microbiome, and profiling the gut metabolome at baseline and the end of the study, we found that although the probiotic intervention has a limited impact on the human immunity and the gut microbiome and metabolome, the associations between the immunity indicators and multiomics data were strengthened, and further analysis of the gut microbiome's genetic variations revealed inhibited generation of single nucleotide variants (SNVs) by probiotic consumption. Taken together, our findings indicated an underestimated influence of the probiotic, not on altering the microbial composition but on strengthening the association between human immunity and commensal microbes and stabilizing the genetic variations of the gut microbiome. IMPORTANCE Although the global market for probiotics is growing explosively, there is still an active debate about whether the consumption of probiotics is beneficial for nonpatients. In this study, we recruited 100 adults from a college in China and performed 6 weeks of intervention for half of the volunteers. By analyzing the time series multiomics data in this study, we found that the probiotic intervention (i) has a limited effect on human immunity or the global structure of the gut microbiome and metabolome, (ii) can largely influence the correlation of the development between multiomics data and immunity, which was not able to be discovered by conventional differential abundance analysis, and (iii) can inhibit the generation of SNVs in the gut microbiome instead of promoting it.

2.
Comput Struct Biotechnol J ; 19: 5888-5897, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34815833

RESUMO

Probiotics administration can facilitate the restoration of host gut microbiota/metabolome after antibiotic treatment. Yet, the mechanism behind such beneficial effects remains unclear. This study constructed a rat model of antibiotic-induced gut dysbiosis to monitor the effects and mechanism of probiotic (Lactobacillus casei Zhang) treatment in maintaining gut homeostasis and restoring the gut microbiota/metabolome. Forty rats were randomly divided into four groups (n = 10 per group): control receiving only saline (Ctrl), antibiotic (AB-Ctrl), antibiotic followed by probiotic (AB-Prob), and antibiotic plus probiotic followed by probiotic (AB + Prob). Rat fecal microbiota and sera were collected at four time points from pre-treatment to post-treatment. The probiotic-treated group (AB + Prob) had significantly more Parabacteroides (P.) goldsteinii after one week of antibiotic and probiotic intervention but fewer antibiotic resistance genes (ARGs)-possessing bacteria (Clostridioides difficile and Burkholderiales bacterium). Consistently, metabolomics data revealed that both probiotic groups had more acetic acid, propionic acid, butyric acid, and valeric acid post treatment. Moreover, a potential probiotic species, P. goldsteinii, strongly correlated with L. casei, as well as propionic acid, butyric acid, and valeric acid. Furthermore, administering probiotic lowered the serum IL-1α level. In contrast, the antibiotic-recipients had a higher irreversible level of IL-1α, suggesting inflammation of the rats. Thus, antibiotic treatment not only led to host gut dysbiosis, but inflammatory responses and an increase in gut ARGs. Daily L. casei Zhang supplementation could alleviate the side effect of cefdinir intervention and facilitate the restoration of gut microbial homeostasis, and these probiotic effects might involve P. goldsteinii-mediated beneficial activities.

3.
World J Microbiol Biotechnol ; 37(7): 127, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34181131

RESUMO

This study investigated the effect of inoculating Lactobacillus (L.) plantarum PS-8 in fermentation of alfalfa silages. We monitored the fermentation characteristics and bacterial population dynamics during the ensiling process. PacBio single molecule real time sequencing was combined with propidium monoazide (PMA) treatment to monitor the viable microbiota dynamics. We found that inoculating L. plantarum PS-8 may improve the silage quality by accelerating acidification, reducing the amounts of clostridia, coliform bacteria, molds and yeasts, elevating the protein and organic acid contents (except butyrate), and enhancing lactic acid bacteria (LAB) while suppressing harmful microorganisms. Some significant differential abundant taxa were found between the PMA-treated and non-treated microbiota. For example, the relative abundances of L. brevis, L. plantarum, and Pediococcus pentosaceus were significantly higher in the PMA-treated group than the non-PMA-treated group, suggesting obvious differences between the viable and non-viable microbiota. It would thus be necessary to distinguish between the viable and non-viable microbial communities to further understand their physiological contribution in silage fermentation. By tracking the dynamics of viable microbiota in relation with changes in the physico-chemical parameters, our study provided novel insights into the beneficial effects of inoculating L. plantarum PS-8 in silage fermentation and the physiological function of the viable bacterial communities.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Fungos/crescimento & desenvolvimento , Lactobacillus plantarum/crescimento & desenvolvimento , Medicago sativa/microbiologia , Microbiota , Silagem/microbiologia , Azidas/análise , Bactérias/classificação , Bactérias/genética , Biodiversidade , DNA Bacteriano , Fermentação , Lactobacillales/crescimento & desenvolvimento , Medicago sativa/metabolismo , Propídio/análogos & derivados , Propídio/análise
4.
mSystems ; 5(1)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992633

RESUMO

The widespread use of antibiotics has caused great concern in the biosafety of probiotics. In this study, we conducted a 12-month adaptive laboratory evolution (ALE) experiment to select for antibiotics-adapted Lactobacillus plantarum P-8, a dairy-originated probiotic bacterium. During the ALE process, the ampicillin MIC for the parental L. plantarum P-8 strain increased gradually and reached the maximum level of bacterial fitness. To elucidate the molecular mechanisms underlying the ampicillin-resistant phenotype, we comparatively analyzed the genomes and proteomes of the parental strain (L. plantarum P-8) and two adapted lines (L. plantarum 400g and L. plantarum 1600g). The adapted lines showed alterations in their carbon, amino acid, and cell surface-associated metabolic pathways. Then, gene disruption mutants were created to determine the role of six highly expressed genes in contributing to the enhanced ampicillin resistance. Inactivation of an ATP-dependent Clp protease/the ATP-binding subunit ClpL, a small heat shock protein, or a hypothetical protein resulted in partial but significant phenotypic reversion, confirming their necessary roles in the bacterial adaptation to ampicillin. Genomic analysis confirmed that none of the ampicillin-specific differential expressed genes were flanked by any mobile genetic elements; thus, even though long-term exposure to ampicillin upregulated their expression, there is low risk of spread of these genes and adapted drug resistance to other bacteria via horizontal gene transfer. Our study has provided evidence of the biosafety of probiotics even when used in the presence of antibiotics.IMPORTANCE Antibiotic resistance acquired by adaptation to certain antibiotics has led to growing public concerns. Here, a long-term evolution experiment was used together with proteomic analysis to identify genes/proteins responsible for the adaptive phenotype. This work has provided novel insights into the biosafety of new probiotics with high tolerance to antibiotics.

5.
Food Sci Biotechnol ; 28(1): 139-145, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30815304

RESUMO

Chinese Tianshan tibico grains were collected from the rural area of Tianshan in Xinjiang province, China. Typical tibico grains are known to consist of polysaccharide matrix that embeds a variety of bacteria and yeasts. These grains are widely used in some rural regions to produce a beneficial sugary beverage that is slightly acidic and contains low level of alcohol. This work aimed to characterize the microbiota composition of Chinese Tianshan tibicos using the single molecule, real-time sequencing technology, which is advantageous in generating long reads. Our results revealed that the microbiota mainly comprised of the bacterial species of Lactobacillus hilgardii, Lactococcus raffinolactis, Leuconostoc mesenteroides, Zymomonas mobilis, together with a Guehomyces pullulans-dominating fungal community. The data generated in this work helps identify beneficial microbes in Chinese Tianshan tibico grains.

6.
Front Microbiol ; 9: 292, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29515561

RESUMO

Amoxicillin is one of the most commonly prescribed antibiotics for bacterial infections and gastrointestinal disorders. To investigate the adaptation of Lactobacillus (L.) casei Zhang to amoxicillin stress, an iTRAQ-based comparative proteomic analysis was performed to compare the protein profiles between the parental L. casei Zhang and its amoxicillin-resistant descendent strains. Our results revealed a significant increase in the relative expression of 38 proteins (>2.0-folds, P < 0.05), while the relative expression of 34 proteins significantly decreased (<-2.0-folds, P < 0.05). The amoxicillin-resistant descendent strain exhibited marked alterations in carbohydrate and amino acid metabolism. Moreover, certain components involving in membrane metabolism were activated. The differences in the proteomic profiles between the two strains might explain the enhanced stress resistance of the adapted bacteria.

7.
J Proteome Res ; 17(3): 1290-1299, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29405720

RESUMO

Nutrient starvation is an important survival challenge for bacteria during industrial production of functional foods. As next-generation sequencing technology has greatly advanced, we performed proteomic and genomic analysis to investigate the response of Lactobacillus casei Zhang to a glucose-restricted environment. L. casei Zhang strains were permitted to evolve in glucose-restricted or normal medium from a common ancestor over a 3 year period, and they were sampled at 1000, 2000, 3000, 4000, 5000, 6000, 7000, and 8000 generations and subjected to proteomic and genomic analyses. Genomic resequencing data revealed different point mutations and other mutational events in each selected generation of L. casei Zhang under glucose restriction stress. The differentially expressed proteins induced by glucose restriction were mostly related to fructose and mannose metabolism, carbohydrate metabolic processes, lyase activity, and amino-acid-transporting ATPase activity. Integrative proteomic and genomic analysis revealed that the mutations protected L. casei Zhang against glucose starvation by regulating other cellular carbohydrate, fatty acid, and amino acid catabolism; phosphoenolpyruvate system pathway activation; glycogen synthesis; ATP consumption; pyruvate metabolism; and general stress-response protein expression. The results help reveal the mechanisms of adapting to glucose starvation and provide new strategies for enhancing the industrial utility of L. casei Zhang.


Assuntos
Adaptação Fisiológica/genética , Genoma Bacteriano , Glucose/deficiência , Lacticaseibacillus casei/metabolismo , Proteômica/métodos , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Aminoácidos/metabolismo , Transporte Biológico , Meios de Cultura/química , Meios de Cultura/farmacologia , Ácidos Graxos/metabolismo , Frutose/metabolismo , Expressão Gênica , Glucose/farmacologia , Glicogênio/biossíntese , Lacticaseibacillus casei/efeitos dos fármacos , Lacticaseibacillus casei/genética , Lacticaseibacillus casei/crescimento & desenvolvimento , Liases/genética , Liases/metabolismo , Manose/metabolismo , Fosfoenolpiruvato/metabolismo , Mutação Puntual , Estresse Fisiológico
8.
J Proteomics ; 176: 37-45, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29414317

RESUMO

Lactobacillus plantarum, commonly isolated from plant material, is widely used to produce various types of fermented foods. However, nutrient-limiting conditions are often encountered during industrial applications. The present study aimed to investigate the response of L. plantarum P-8 to glucose-limited conditions in a long-term experiment. Genotypic and proteomic changes in L. plantarum P-8 were monitored over 3 years in glucose-limited and glucose-normal media using whole-genome resequencing and tandem mass tag-based quantitative proteomic analysis. Results showed that L. plantarum employed numerous survival mechanisms, including alteration of the cell envelope, activation of the PTS system, accumulation and consumption of amino acids, increase in the metabolism of carbohydrates (via glycolysis, citric acid cycle, and pyruvate metabolism), and increase in the production of ATP in response to glucose starvation. This study demonstrates the feasibility of experimental evolution of L. plantarum P-8, while whole-genome resequencing of adapted isolates provided clues toward bacterial functions involved and a deeper mechanistic understanding of the adaptive response of L. plantarum to glucose-limited conditions. SIGNIFICANCE: We have conducted a 3-year experiment monitoring genotypic and proteomic changes in Lactobacillus plantarum P-8 in glucose-limited and glucose-normal media. Whole-genome resequencing and tandem mass tag-based quantitative proteomics were performed for analyzing genomic evolution of L. plantarum P-8 in glucose-limited and glucose-normal conditions. In addition, differential expressed proteins in all generations between these two conditions were identified and functions of these proteins specific to L group were predicted. L. plantarum employed numerous survival mechanisms, including alteration of the cell envelope, activation of the PTS system, accumulation and consumption of amino acids, increase in the metabolism of carbohydrates (glycolysis, citric acid cycle, and pyruvate metabolism), and increase in the production of ATP in response to glucose starvation.


Assuntos
Adaptação Fisiológica , Genótipo , Glucose/farmacologia , Lactobacillus plantarum/química , Proteômica , Sequenciamento Completo do Genoma , Trifosfato de Adenosina/biossíntese , Metabolismo dos Carboidratos , Genoma Bacteriano/efeitos dos fármacos , Glucose/deficiência , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/fisiologia , Fósforo-Oxigênio Liases/metabolismo , Proteômica/métodos
9.
J Dairy Sci ; 101(3): 1915-1920, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29248233

RESUMO

Lactobacillus casei Zhang is a probiotic strain originally isolated from koumiss. Previously, we showed that an alkaline shock protein (encoded by asp23) was involved in the adaptation of L. casei Zhang to gentamycin. In the present study, we compared the proteomes of the asp23 mutant and its parent strain grown in the presence of gentamycin. The results showed that 22 and 21 proteins were significantly up- and downregulated, respectively (>1.5-fold difference). By parallel reaction monitoring analysis, we further validated that specific membrane-associated proteins were important in regulating the antibiotics-induced cell wall stress. The findings provide insight into the physiological role of the asp23 gene in the growth response of L. casei when exposed to antibiotic stress.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica , Gentamicinas/farmacologia , Lacticaseibacillus casei/genética , Proteínas de Bactérias/metabolismo , Lacticaseibacillus casei/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteoma
10.
Front Microbiol ; 8: 2316, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29218040

RESUMO

Lactobacillus (L. casei) Zhang is a koumiss-originated probiotic strain, which was used as a model in a long-term antibiotics-driven evolution experiment to reveal bacterial evolutionary dynamics; and we isolated gentamycin-resistant L. casei Zhang descendents. To decipher the gentamycin resistance mechanism, here we cultivated the parental L. casei Zhang and its descendent cells in an antibiotics-containing environment to compare their global protein expression profiles using the iTRAQ-based proteomic approach. A total of 72 proteins were significantly up-regulated (>2.0-fold, P < 0.05), whilst 32 proteins were significantly down-regulated <-2.0-fold, P < 0.05) in the descendent line. The gentamycin-resistant descendent line showed elevated expression in some carbohydrates, amino acids, and purine metabolic pathways. Several stress-related proteins were also differentially expressed. Among them, one alkaline shock protein, asp23, was up-regulated most in the gentamycin-resistant strain (21.9-fold increase compared with the parental strain). The asp23 gene disruption mutant was significantly more sensitive to gentamycin compared with the wild type, suggesting an important role of this gene in developing the gentamycin-resistant phenotype in L. casei. Our report has described the adaptation of a probiotic strain that has acquired antibiotics resistance through long-term antibiotics exposure at the proteome level, and we revealed a novel mechanism of gentamycin resistance.

11.
J Food Sci ; 82(5): 1193-1199, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28369806

RESUMO

Koji is a kind of Japanese traditional fermented starter that has been used for centuries. Many fermented foods are made from koji, such as sake, miso, and soy sauce. This study used the single molecule real-time sequencing technology (SMRT) to investigate the bacterial and fungal microbiota of 3 Japanese koji samples. After SMRT analysis, a total of 39121 high-quality sequences were generated, including 14354 bacterial and 24767 fungal sequence reads. The high-quality gene sequences were assigned to 5 bacterial and 2 fungal plyla, dominated by Proteobacteria and Ascomycota, respectively. At the genus level, Ochrobactrum and Wickerhamomyces were the most abundant bacterial and fungal genera, respectively. The predominant bacterial and fungal species were Ochrobactrum lupini and Wickerhamomyces anomalus, respectively. Our study profiled the microbiota composition of 3 Japanese koji samples to the species level precision. The results may be useful for further development of traditional fermented products, especially optimization of koji preparation. Meanwhile, this study has demonstrated that SMRT is a robust tool for analyzing the microbial composition in food samples.


Assuntos
Fungos/classificação , Alimentos de Soja/microbiologia , Fermentação , Microbiologia de Alimentos , Reação em Cadeia da Polimerase em Tempo Real
12.
Sci Rep ; 6: 31403, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27510766

RESUMO

Lactic acid bacteria that can produce alpha-galactosidase are a promising solution for improving the nutritional value of soy-derived products. For their commercial use in the manufacturing process, it is essential to understand the catabolic mechanisms that facilitate their growth and performance. In this study, we used comparative proteomic analysis to compare catabolism in an engineered isolate of Lactobacillus plantarum P-8 with enhanced raffinose metabolic capacity, with the parent (or wild-type) isolate from which it was derived. When growing on semi-defined medium with raffinose, a total of one hundred and twenty-five proteins were significantly up-regulated (>1.5 fold, P < 0.05) in the engineered isolate, whilst and one hundred and six proteins were significantly down-regulated (<-1.5 fold, P < 0.05). During the late stages of growth, the engineered isolate was able to utilise alternative carbohydrates such as sorbitol instead of raffinose to sustain cell division. To avoid acid damage the cell layer of the engineered isolate altered through a combination of de novo fatty acid biosynthesis and modification of existing lipid membrane phospholipid acyl chains. Interestingly, aspartate and glutamate metabolism was associated with this acid response. Higher intracellular aspartate and glutamate levels in the engineered isolate compared with the parent isolate were confirmed by further chemical analysis. Our study will underpin the future use of this engineered isolate in the manufacture of soymilk products.


Assuntos
Proteínas de Bactérias/metabolismo , Lactobacillus plantarum/crescimento & desenvolvimento , Proteômica/métodos , Rafinose/metabolismo , Fermentação , Regulação Bacteriana da Expressão Gênica , Lactobacillus plantarum/isolamento & purificação , Lactobacillus plantarum/metabolismo , Engenharia Metabólica , Valor Nutritivo , Sorbitol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...