Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Biol (Weinh) ; 8(1): e2300315, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37759403

RESUMO

Systemic sclerosis (SSc) is an immune-mediated rheumatic disease that is characterized by fibrosis of the skin and internal organs and vasculopathy with poor prognosis. Dangui Huoxue Preparation (DHP) is a clinically effective traditional Chinese herbal formula for the treatment of SSc in the hospital. This study aims to investigate the therapeutic effects and underlying molecular mechanisms of DHP in the treatment of SSc. SSc mice models are induced by bleomycin (BLM). Tissues of DHP group, normal control group, and positive control drug Sanqi Tongshu Capsule (STC) group are collected for inflammation, fibrosis, and vasculopathy. Also, the human dermal fibroblasts (HDF) stimulated with TGF-ß1 are analyzed for in vitro study. The expression levels of MCP-1, IFN-γ, IL-1ß, IL-10, Fizz1, iNOS, and IL12p40, and the mRNA levels of Col1a1, Col1a2, Col3a1, and Col5a1 are significantly decreased in all DHP groups and STC group compare with those in the BLM group. The main drug of DHP inhibits the proliferation and migration of HDF, reduces Ctgf, Itgb3, Itgb5 expression, and also inhibits the Smad3 pathway. In conclusion, DHP can ameliorate SSc skin inflammation, fibrosis, and vasculopathy, possibly suppressing the TGF-ß1/Smad3 signaling pathway through extracellular and intracellular mechanisms.


Assuntos
Escleroderma Sistêmico , Fator de Crescimento Transformador beta1 , Humanos , Animais , Camundongos , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/efeitos adversos , Modelos Animais de Doenças , Fibrose , Escleroderma Sistêmico/induzido quimicamente , Escleroderma Sistêmico/tratamento farmacológico , Escleroderma Sistêmico/genética , Inflamação/tratamento farmacológico , Inflamação/genética , Bleomicina/toxicidade , Bleomicina/uso terapêutico
2.
Arthritis Res Ther ; 25(1): 212, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884942

RESUMO

BACKGROUND: Systemic sclerosis (SSc), with unclear pathophysiology, is a paradigmatic rheumatic disease of immunity dysfunction-driven multi-organ inflammation and ultimate fibrosis. Pathogenesis breakthroughs are urgently needed for available treatments halting its unremitting stiffness. This study aims to investigate whether ferroptosis can regulate the progressive SSc fibrosis. METHODS: In vivo, bleomycin (BLM)-induced mice model was subjected to ferroptosis detection using western blotting, malondialdehyde (MDA), and glutathione (GSH) assays. Pharmacological inhibitor of the acyl-CoA synthetase long-chain family member 4 (ACSL4) was utilized to explore its potential therapeutic effects for fibrosis, from histological, biochemical, and molecular analyses. In vitro, bone marrow-derived macrophages (BMDM) were activated into inflammatory phenotype and then the relationship was evaluated between activation level and ferroptosis sensitivity in lipopolysaccharide (LPS) incubation with gradient concentrations. The potential calpain/ACSL4 axis was analyzed after calpain knockdown or over-expression in Raw264.7. RESULTS: Both skin and lung tissue ferroptosis were present in SSc mice with enhanced ACSL4 expression, while ACSL4 inhibition effectively halted fibrosis progressing and provides protection from inflammatory milieu. Meanwhile, a positive regulation relationship between LPS-induced macrophage activity and ferroptosis sensitivity can be observed. After calpain knockdown, both inflammatory macrophage ferroptosis sensitivity and ACSL4 expression decreased, while its over-expression renders ACSL4-envoking condition. Also, calpain pharmacological inhibition reduced both ferroptosis and fibrosis aptitude in mice. CONCLUSIONS: ACSL4 induces inflammatory macrophage ferroptosis to aggravate fibrosis progressing. ACSL4 and its upregulators of calpains may be potential therapeutic targets for BLM model of SSc.


Assuntos
Coenzima A Ligases , Ferroptose , Macrófagos , Escleroderma Sistêmico , Animais , Camundongos , Bleomicina/toxicidade , Calpaína , Fibrose , Escleroderma Sistêmico/induzido quimicamente , Coenzima A Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...