Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(12): 2366-2375, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38489755

RESUMO

Accurate spectroscopic data of carbon dioxide are widely used in many important applications, such as carbon monitoring missions. Here, we present comb-locked cavity ring-down saturation spectroscopy of the second most abundant isotopologue of CO2, 13C16O2. We determined the positions of 88 lines in three vibrational bands in the 1.6 µm region, 30011e/30012e/30013e-00001e, with an accuracy of a few kHz. Based on the analysis of combination differences, we obtained for the first time the ground-state rotational energies with kHz accuracy. We also provide a set of hybrid line positions for 150 13C16O2 transitions. The rotational energies (J < 50) in the 30013e vibrational state can be fitted by a set of rotational and centrifugal constants with deviations within a few kHz, indicating that the 30013e state is free of perturbations. These precise isotopic line positions will be utilized to improve the Hamiltonian model and quantitative remote sensing of carbon dioxide. Moreover, they will help to track changes in the carbon source and sink through isotopic analysis.

2.
Anal Bioanal Chem ; 413(21): 5383-5393, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34235567

RESUMO

In this work, AuAgPd trimetallic nanoparticles (AuAgPd TNPs) with intrinsic and broad-spectrum peroxidase-like activity were synthesized through a one-pot method by co-reduction of HAuCl4, AgNO3, and Na2PdCl4 with NaBH4. The morphology and composition of AuAgPd TNPs were characterized. The peroxidase-like activity of AuAgPd TNPs were highly dependent on the composition and nanostructure of AuAgPd TNPs. Rationally designed AuAgPd TNPs could catalyze the oxidation of various chromogenic substrates including 3,3'5,5'-tetramethylbenzidine (TMB), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), and o-phenylenediamine (OPD) by H2O2 to generate blue, green, and yellow products, respectively. Kinetic assays indicated that AuAgPd TNPs exhibited high affinity to H2O2. Then, sensitive colorimetric assays were developed for H2O2 detection by using ABTS, OPD, and TMB as chromogenic substrates, respectively. Lowest limit of detection (LOD) of 3.1 µM with wide linear range of 6-250 µM was obtained by using ABTS as substrate. Hydrogen sulfide ion (HS-) could effectively inhibit the peroxidase-like activity of AuAgPd TNPs. Thus, a selective colorimetric assay was further fabricated for HS- detection with LOD of 2.3 µM. This work provides an effective way for the synthesis of trimetallic nanozyme with peroxidase-like activity and also for tailoring their catalytic activity for desired use. Graphical abstract.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...