Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(2): 3651-3663, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36595485

RESUMO

The dispute over the effect of cavitation heat on material surface intensifies the fuzziness of cavitation erosion (CE) mechanism and limits the development of protective materials. Here, an anti-CE Al10Cr28Co28Ni34 high-entropy alloy (HEA) coating with single face-centered cubic (FCC), prepared by high-velocity oxy-fuel (HVOF) spraying technologies, was designed by inducing mechanical and thermal energy-induced behaviors to transform or counteract each other. The results showed that, on the one hand, this coating underwent the refinement of the average grain size from 1.22 to 1.02 µm, the increase in dislocation density from 1.28 × 10-10 to 1.83 × 10-10 m-2, and the martensitic transformation from FCC to body-centered cubic (BCC) under the cavitation load; on the other hand, cavitation heat could indeed induce grain growth and realize structural relaxation, which confirmed that cavitation heat acting on the material surface at temperatures theoretically above 1206.28 K also played a significant role in the CE mechanism. That is, the surface microstructure of this coating was always in a dynamic cycle during the CE process. Therefore, the coating achieved the simultaneous absorption of mechanical impact energy and thermal energy released by the bubble collapse while effectively avoiding the overenrichment of crystal defects and finally exhibited a CE resistance 2 times better than that of the classical AlCrCoFeNi HEA coating. This design concept of inducing different energy restraints or neutralization through the special response behaviors of surface microstructure provides a completely new way for the development of CE-resistant materials.

2.
ACS Appl Mater Interfaces ; 14(28): 31702-31714, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35796026

RESUMO

Hydroxyapatite (HA) bioceramic coating has been extensively applied for the modification of metallic implants to improve their biocompatibility and service life after implantation. Unfortunately, HA coating often suffers from high friction, severe wear, and bacterial invasion, which restrict its application in artificial joints. According to a bioinspired soft/hard combination strategy, a novel HA composite coating that is infiltrated with a vancomycin-loaded graphene oxide (GO) hybrid supramolecular hydrogel is developed via vacuum infiltration and a subsequent host-guest interaction-induced self-assembly process. The holes of textured HA ceramic coating act just like a "magic pocket", offering a stable container to form and store GO hybrid hydrogels and even to recycle wear debris as well. The drug-loaded hybrid hydrogels stored in textured HA coating possess a unique shear force and/or frictional heat triggered gel-sol transition and sustained drug release behavior, acting like the extrusion of synovial fluid during articular cartilage movement, leading to a remarkable self-lubrication, anti-wear performance, and promising antibacterial property against Staphylococcus aureus. The friction coefficient and wear rate of composite coating reduced by nearly five times and three orders of magnitude compared with textured HA coating, respectively, which benefited from the synergistic lubricate effect of cyclodextrin-based pseudopolyrotaxane supramolecular hydrogel and GO lubricants.


Assuntos
Grafite , Hidrogéis , Antibacterianos/farmacologia , Durapatita/farmacologia , Grafite/farmacologia , Hidrogéis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...