Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 60(30): 9530-9534, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34807096

RESUMO

In this paper, we demonstrate an intensity-tunable THz bandpass filter by introducing liquid crystal (LC) integrated with asymmetric frequency selective surface (FSS) and subwavelength metal gratings. Here, the tunable THz filter is derived from the inner polarization state conversion in composited devices, and the incident linear polarization can be converted into 90° orthogonal components. By controlling the LC orientation under the applied electric field with the metamaterial electrodes, the polarization conversion process can be actively modulated; thus, the polarization-dependent and tunable THz bandpass filter is achieved. Based on the multilayer design and the inner Fabry-Perot-like resonance mechanism, the LC-integrated metamaterials filter presents better filtering performance than the single FSS filter, and the Q-value is improved from 7.7 to 13.8 at the working frequency. Our simulated work paves the way for the design of new and efficient THz filters.

2.
Nanotechnology ; 32(50)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34555813

RESUMO

In this paper, silver micro/nanostructures composed of sintered nanoparticles were printed by capturing silver nanoparticles in water with 800 nm femtosecond laser trapping. Relationships of laser power, scanning speed, nanoparticle concentration, and the width and morphology of fabricated silver wire were systematically investigated. It is found that low scanning speed and high nanoparticle concentration favor the printing of silver wire with good morphology. A silver wire with width of 305 nm was printed. Electrical resistivities of printed wires are about 24 times that of bulk silver. Silver grid structures and dot arrays were printed by using this technology. Several three-dimensional silver cuboid structures were also printed. This work provides a protocol for printing of three-dimensional metallic micro/nanostructures using laser trapping. These printed structures have great application prospects in metamaterials, flexible electronics, and SERS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...