Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 14: 893250, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35707699

RESUMO

Computer-aided diagnosis (CAD) has undergone rapid development with the advent of advanced neuroimaging and machine learning methods. Nevertheless, how to extract discriminative features from the limited and high-dimensional data is not ideal, especially for amnesic mild cognitive impairment (aMCI) data based on resting-state functional magnetic resonance imaging (rs-fMRI). Furthermore, a robust and reliable system for aMCI detection is conducive to timely detecting and screening subjects at a high risk of Alzheimer's disease (AD). In this scenario, we first develop the mask generation strategy based on within-class and between-class criterion (MGS-WBC), which primarily aims at reducing data redundancy and excavating multiscale features of the brain. Concurrently, vector generation for brain networks based on Laplacian matrix (VGBN-LM) is presented to obtain the global features of the functional network. Finally, all multiscale features are fused to further improve the diagnostic performance of aMCI. Typical classifiers for small data learning, such as naive Bayesian (NB), linear discriminant analysis (LDA), logistic regression (LR), and support vector machines (SVMs), are adopted to evaluate the diagnostic performance of aMCI. This study helps to reveal discriminative neuroimaging features, and outperforms the state-of-the-art methods, providing new insights for the intelligent construction of CAD system of aMCI.

2.
Front Psychol ; 12: 809459, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095696

RESUMO

Due to the non-invasiveness and high precision of electroencephalography (EEG), the combination of EEG and artificial intelligence (AI) is often used for emotion recognition. However, the internal differences in EEG data have become an obstacle to classification accuracy. To solve this problem, considering labeled data from similar nature but different domains, domain adaptation usually provides an attractive option. Most of the existing researches aggregate the EEG data from different subjects and sessions as a source domain, which ignores the assumption that the source has a certain marginal distribution. Moreover, existing methods often only align the representation distributions extracted from a single structure, and may only contain partial information. Therefore, we propose the multi-source and multi-representation adaptation (MSMRA) for cross-domain EEG emotion recognition, which divides the EEG data from different subjects and sessions into multiple domains and aligns the distribution of multiple representations extracted from a hybrid structure. Two datasets, i.e., SEED and SEED IV, are used to validate the proposed method in cross-session and cross-subject transfer scenarios, experimental results demonstrate the superior performance of our model to state-of-the-art models in most settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...