Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Biochem Biophys Res Commun ; 490(2): 147-154, 2017 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-28602698

RESUMO

Early growth response factor 1 (Egr-1) is a zinc finger transcription factor which responses rapidly to a variety of extracellular stimuli. Previous studies have suggested that Egr-1 exerts pathological functions in chronic obstructive pulmonary disease (COPD) by regulation of cigarette smoking-induced autophagy, cell death, and inflammation. However, little is known about the role of Egr-1 in regulation of mucus production in airway epithelium. In this study, we observed that cigarette smoke extract (CSE) induced a successive expression of Egr-1 and MUC5AC in human bronchial epithelial (HBE) cells. Knockdown of Egr-1 markedly attenuated CSE-induced MUC5AC production, and chromatin immunoprecipitation revealed that Egr-1 transcriptionally bound to MUC5AC promoter upon CSE stimulation. Concurrently, CSE increased the expression of c-Jun and c-Fos, two subunits of activator protein 1 (AP-1) which also critically regulates CSE-induced MUC5AC in HBE cells. CSE also induced a physical interaction of Egr-1 and AP-1, and knockdown of Egr-1 significantly decreased CSE-induced expression of c-Fos and c-Jun. Furthermore, knockdown of c-Fos remarkably attenuated the CSE-induced Egr-1 binding to MUC5AC promoter. These data taken together demonstrate that Egr-1 is essential for CSE-induced MUC5AC production in HBE cells likely through interaction with and modulation of AP-1, and re-emphasize targeting Egr-1 as a novel therapeutic strategy for COPD.


Assuntos
Brônquios/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Células Epiteliais/metabolismo , Mucina-5AC/genética , Fumar , Brônquios/patologia , Células Cultivadas , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/isolamento & purificação , Células Epiteliais/patologia , Humanos , Mucina-5AC/metabolismo
4.
Am J Physiol Lung Cell Mol Physiol ; 306(11): L1016-25, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24727585

RESUMO

Autophagy plays a pivotal role in cellular homeostasis and adaptation to adverse environments, although the regulation of this process remains incompletely understood. We have recently observed that caveolin-1 (Cav-1), a major constituent of lipid rafts on plasma membrane, can regulate autophagy in cigarette smoking-induced injury of lung epithelium, although the underlying molecular mechanisms remain incompletely understood. In the present study we found that Cav-1 interacted with and regulated the expression of ATG12-ATG5, an ubiquitin-like conjugation system crucial for autophagosome formation, in lung epithelial Beas-2B cells. Deletion of Cav-1 increased basal and starvation-induced levels of ATG12-ATG5 and autophagy. Biochemical analyses revealed that Cav-1 interacted with ATG5, ATG12, and their active complex ATG12-ATG5. Overexpression of ATG5 or ATG12 increased their interactions with Cav-1, the formation of ATG12-ATG5 conjugate, and the subsequent basal levels of autophagy but resulted in decreased interactions between Cav-1 and another molecule. Knockdown of ATG12 enhanced the ATG5-Cav-1 interaction. Mutation of the Cav-1 binding motif on ATG12 disrupted their interaction and further augmented autophagy. Cav-1 also regulated the expression of ATG16L, another autophagy protein associating with the ATG12-ATG5 conjugate during autophagosome formation. Altogether these studies clearly demonstrate that Cav-1 competitively interacts with the ATG12-ATG5 system to suppress the formation and function of the latter in lung epithelial cells, thereby providing new insights into the molecular mechanisms by which Cav-1 regulates autophagy and suggesting the important function of Cav-1 in certain lung diseases via regulation of autophagy homeostasis.


Assuntos
Células Epiteliais Alveolares/fisiologia , Autofagia , Caveolina 1/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sequência de Aminoácidos , Animais , Proteína 12 Relacionada à Autofagia , Proteína 5 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Ligação Competitiva , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Caveolina 1/genética , Linhagem Celular , Citoplasma/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética
5.
J Biol Chem ; 287(25): 20922-30, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22547061

RESUMO

The Nrf2 (nuclear erythroid 2 p45-related factor-2) signaling pathway is known to play a pivotal role in a variety of oxidative stress-related human disorders. It has been reported recently that the plasma membrane resident protein caveolin-1 (Cav-1) can regulate expression of certain antioxidant enzymes and involves in the pathogenesis of oxidative lung injury, but the detailed molecular mechanisms remain incompletely understood. Here, we demonstrated that Cav-1 inhibited the expression of antioxidant enzymes through direct interaction with Nrf2 and subsequent suppression of its transcriptional activity in lung epithelial Beas-2B cells. Cav-1 deficiency cells exhibited higher levels of antioxidant enzymes and were more resistant to oxidative stress induced cytotoxicity, whereas overexpression of Cav-1 suppressed the induction of these enzymes and further augmented the oxidative cell death. Cav-1 constitutively interacted with Nrf2 in both cytosol and nucleus. Stimulation of 4-hydroxynonenol increased the Cav-1-Nrf2 interaction in cytosol but disrupted their association in the nucleus. Knockdown of Cav-1 also disassociated the interaction between Nrf2 and its cytoplasmic inhibitor Keap1 (Kelch-like ECH-associated protein 1) and increased the Nrf2 transcription activity. Mutation of the resembling Cav-1 binding motif on Nrf2 effectively attenuated their interaction, which exhibited higher transcription activity and induced higher levels of antioxidant enzymes relative to the wild-type control. Altogether, these studies clearly demonstrate that Cav-1 inhibits cellular antioxidant capacity through direct interaction with Nrf2 and subsequent suppression of its activity, thereby implicating in certain oxidative stress-related human pathologies.


Assuntos
Antioxidantes/metabolismo , Caveolina 1/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Motivos de Aminoácidos , Animais , Caveolina 1/genética , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Citosol/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Camundongos , Camundongos Knockout , Mutação , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...