Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Phys Chem Chem Phys ; 26(19): 14131-14139, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38690682

RESUMO

Cancer is one of the primary health concerns among humans due to its high incidence rate and lack of effective treatment. Currently, medical techniques to achieve the precise elimination of local cancer lesions with negligible damage to normal tissues are still intensely desired. Herein, we synthesized BaTiO3-TiO2 hollow spheres (BTHSs) for use in microwave dynamic therapy (MWDT) for cancer. Under UV irradiation, BTHSs can mediate the production of multiple reactive oxygen species (ROS), mainly 1O2, which results in a rapid photocatalytic degradation rate (97%), 1.6-fold that of commercial P25. Importantly, the ROS production process can be triggered by microwaves to effectively execute MWDT for cancer. Under microwave irradiation, BTHSs exhibit a remarkable therapeutic effect and slight cytotoxicity. In terms of mechanism, the enhanced ROS production efficiency of BTHSs can be attributed to their unique hollow structure and the formation of a type-II heterojunction by the incorporation of BaTiO3. The hollow structure increases the availability of active sites and enhances light scattering, while the BaTiO3-TiO2 heterojunction enhances the photocatalytic activity of TiO2 through charge transfer and electron-hole separation. Overall, this study provides important insights into the design and optimization of sensitizers for MWDT applications.


Assuntos
Compostos de Bário , Micro-Ondas , Espécies Reativas de Oxigênio , Titânio , Titânio/química , Compostos de Bário/química , Humanos , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Neoplasias , Catálise , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
2.
Biomimetics (Basel) ; 8(6)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37887590

RESUMO

When humanoid robots work in human environments, falls are inevitable due to the complexity of such environments. Current research on humanoid robot falls has mainly focused on falls on the ground, with little research on humanoid robots falling from the air. In this paper, we employ an extended state variable formulation that directly maps from the high-level motion strategy space to the full-body joint space to optimize the falling trajectory in order to protect the robot when falling from the air. In order to mitigate the impact force generated by the robot's fall, during the aerial phase, we employ simple proportion differentiation (PD) control. In the landing phase, we optimize the optimal contact force at the contact point using the centroidal dynamics model. Based on the contact force, the changes to the end-effector positions are solved using a dual spring-damper model. In the simulation experiments, we conduct three comparative experiments, and the simulation results demonstrate that the robot can safely fall 1.5 m from the ground at a pitch angle of 45°. Finally, we experimentally validate the methods on an actual robot by performing a side-fall experiment. The experimental results show that the proposed trajectory optimization and motion control methods can provide excellent shock absorption for the impact generated when a robot falls.

3.
J Dent ; 138: 104658, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37597688

RESUMO

OBJECTIVES: The aim of this study was to validate the near-infrared imaging (NIRI) in comparison with visual inspection (VI) for early detection of proximal caries in primary molars. METHODS: VI and intraoral scans were performed on 126 patients aged 3-12 years with at least one non-cavitied and non-restored proximal tooth surface, who were scheduled for bite wing radiography (BWR) as part of their standard care. Teeth with signs of proximal cavities, restorations or residual caries were excluded in this study. BWR, a gold standard to diagnose proximal caries in primary molars, was used to validate the findings of NIRI and VI. The accuracy, sensitivity, specificity and the area under the curve (AUC) of NIRI and VI were calculated. RESULTS: The accuracy, sensitivity and specificity of NIRI were 82.89%, 74.10% and 90.97%, while those of VI were 71.64%, 43.88% and 97.14%, respectively. NIRI showed higher accuracy and sensitivity, and lower specificity (P < 0.001). The AUC of NIRI was higher than that of VI (0.826 vs 0.706; P < 0.05). CONCLUSIONS: NIRI showed higher sensitivity and lower specificity compared with VI when detecting proximal caries in primary molars. Therefore, it is recommended to use NIRI in combination with BWR to improve the detection rate of proximal caries in primary molars. CLINICAL SIGNIFICANCE: In children, there is a high incidence of proximal caries in primary molars, which require high technical sensitivity for detection. NIRI shows high sensitivity in detecting proximal caries, which may improve their detection rate in primary molars. THE CLINICAL TRIAL REGISTRATION NUMBER: ChiCTR2300070916.


Assuntos
Suscetibilidade à Cárie Dentária , Cárie Dentária , Criança , Humanos , Radiografia Interproximal , Reprodutibilidade dos Testes , Cárie Dentária/diagnóstico por imagem , Sensibilidade e Especificidade , Dente Molar/diagnóstico por imagem
4.
Free Radic Biol Med ; 195: 343-358, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36587923

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a severe neurodegenerative disorder that progressively destroys cognitive skills. Exploring the mechanism underlying autophagic clearance of phosphorylated tau (p-Tau) contributes to developing novel therapeutic strategies for AD. METHODS: SH-SY5Y and HT22 cells were treated with Aß1-42 to establish an in vitro model of AD. Cell viability was examined using CCK-8. TUNEL staining was applied to evaluate cell apoptosis. LC3 puncta was examined by IF staining. m6A modification level was evaluated through MeRIP. RNA pull-down and RIP assays were used for analyzing the interaction between IGF2BP1 and STUB1 transcripts. The binding of KDM1A to the promoter of METTL3 was confirmed by ChIP assays. APP/PS1 transgenic mice were used as an in vivo model of AD. Cognitive skills of mice were evaluated with the Morris water maze. Hippocampal damage and Aß deposition were detected through H&E and IHC staining. RESULTS: Dysregulated levels of autophagy, p-Tau and m6A was observed in an in vitro model of AD. Overexpression of METTL3 or STUB1 enhanced autophagy but reduced p-Tau level in Aß1-42-treated cells. METTL3 stabilized STUB1 mRNA through the m6A-IGF2BP1-dependent mechanism and naturally promoted STUB1 expression, thereby enhancing autophagic p-Tau clearance in Aß1-42-treated cells. Overexpression of KDM1A enhanced autophagy, m6A modification and autophagic p-Tau clearance in Aß1-42-treated cells. KDM1A-mediated upregulation of METTL3 promoted autophagic p-Tau clearance and ameliorated Alzheimer's disease both in vitro and in vivo. CONCLUSION: KDM1A-mediated upregulation of METTL3 enhances autophagic clearance of p-Tau through m6A-dependent regulation of STUB1, thus ameliorating Alzheimer's disease. Our study provides novel mechanistic insights into AD pathogenesis and potential drug targets for AD.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Camundongos , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Regulação para Cima , Camundongos Transgênicos , Autofagia/genética , Ubiquitina-Proteína Ligases/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Metiltransferases/uso terapêutico , Histona Desmetilases/genética
5.
Am J Orthod Dentofacial Orthop ; 163(3): 298-310, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36564317

RESUMO

INTRODUCTION: Bonded spurs, fixed or removable palatal cribs have been used to treat anterior open bite (AOB) in growing children. Different conclusions have been brought out by different authors. This meta-analysis aimed to evaluate the effect of bonded spurs, fixed and removable palatal cribs in the early treatment of AOB. METHODS: A comprehensive electronic search was carried out through PubMed, Embase (via Ovid), MEDLINE (via Ovid), Cochrane Central Register of Controlled Trials, and Web of Science up to May 1, 2022. This meta-analysis was performed in accordance with the Cochrane Handbook for Systematic Reviews of Interventions. The work was carried out by 2 reviewers in duplicate and independently, including electronic searching, data extracting, risk of bias assessment, quality of evidence grading, heterogeneity and statistical power analysis, and eligibility evaluation of the retrieved articles. RESULTS: Four studies out of 181 articles were recruited in the meta-analysis after applying the inclusion and exclusion criteria. The results showed that bonded lingual spurs and fixed palatal crib or spurs produced similar overbite changes (mean difference, -0.32; 95% confidence interval, -1.06 to 0.43; P = 0.41; I2 = 27%; meta power = 0.099). Fixed palatal crib and removable palatal crib also exhibited comparable effects in correcting AOB (mean difference, -0.02; 95% confidence interval, -0.90 to 0.86; P = 0.96; I2 = 0%; meta power = 0.2182). The quality of evidence about these 2 outcomes assessed with GRADE (Grading of Recommendations, Assessment, Development, and Evaluations) was low. CONCLUSIONS: Bonded lingual spurs, fixed palatal crib or spurs, and removable palatal crib had similar effects in the early treatment of AOB. Because the number of included studies was limited and only the overbite changes before and after treatment were assessed, more clinical randomized controlled studies with longer follow-ups are needed to get more clinically significant advice.


Assuntos
Equipamentos para Lactente , Má Oclusão Classe II de Angle , Mordida Aberta , Sobremordida , Criança , Humanos , Mordida Aberta/terapia , Palato
6.
Oral Dis ; 29(7): 2529-2537, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36582112

RESUMO

Periodontitis is an inflammatory disease characterized by alveolar bone loss. Periodontal ligament stem cells (PDLSCs) have osteogenic differentiation potential, which can be influenced by epigenetics regulation in periodontitis. Therefore, this review aimed to shed light on the role of different epigenetic mechanisms in the osteogenic differentiation of PDLSCs and to consider the prospects of their possible therapeutic applications in periodontitis. Databases MEDLINE (through PubMed) and Web of Science were searched for the current knowledge of epigenetics in osteogenic differentiation of PDLSCs using the keywords "periodontal ligament stem cells", "epigenetic regulation", "epigenetics", "osteogenic differentiation", and "osteogenesis". All studies introducing epigenetic regulation and PDLSCs were retrieved. This review shows that epigenetic factors like DNMT, KDM6A, HDACi, some miRNAs, and lncRNAs can induce the osteogenic differentiation of PDLSCs in the noninflammatory microenvironment. However, the osteogenic differentiation of PDLSCs is inhibited in the inflammatory microenvironment through the upregulated DNA methylation of osteogenesis-related genes and specific changes in histone modification and noncoding RNA. Epigenetics of osteogenic differentiation of PDLSCs in inflammation exhibits the contrary effect compared with a noninflammatory environment. The application of epigenetic drugs to regulate the abnormal epigenetic status in periodontitis and focus on alveolar bone regeneration is promising.


Assuntos
Osteogênese , Periodontite , Humanos , Osteogênese/genética , Ligamento Periodontal , Epigênese Genética , Periodontite/genética , Células-Tronco , Diferenciação Celular/genética , Células Cultivadas
7.
J Integr Neurosci ; 21(6): 152, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36424757

RESUMO

BACKGROUND: This study aimed to reveal the detailed immune-related mechanisms underlying ischemic stroke (IS) and identify new immune-associated biomarkers for clinical management. METHODS: Differentially expressed genes (DEGs) between IS samples and normal controls were identified using the GSE16561 dataset. The feature genes of the immune cells were investigated using the GSE72642 dataset. Weighted correlation network analysis (WGCNA) was performed to reveal module genes, followed by an investigation of common DEGs and a functional enrichment analysis. Potential biomarkers were identified based on hub genes in protein-protein interaction networks and WGCNA. Finally, GSE158312 was used for biomarker verification. RESULTS: In total, 1230 DEGs were identified between the IS samples and normal controls. Seven clinically significant modules were identified using WGCNA. The yellow module genes were positively correlated with polymorphonuclear cells (PMNC), whereas the brown module genes were positively correlated with CD4+ T cells. Eight genes were selected as hub genes. These genes are mainly involved in functions such as the innate immune response. Upregulated TLR2 and ARG1 levels were significantly different between the two groups in the verification dataset. CONCLUSIONS: Our findings suggest ARG1 and TLR2 as novel biomarkers for IS. Upregulated TLR2 might play a role in IS development by participating in the innate immune response function.


Assuntos
AVC Isquêmico , Humanos , Receptor 2 Toll-Like , Biomarcadores , Mapas de Interação de Proteínas
8.
Acta Neurobiol Exp (Wars) ; 82(3): 358-372, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36214718

RESUMO

Hypoxia inducible factor 1α (HIF­1α) has been reported to play a key role in protecting neurons from ischaemic injury. However, the exact molecular mechanisms remain largely unclear. PC12 cells were exposed to oxygen glucose deprivation/reoxygenation (OGD/R) conditions to mimic ischaemic injury in vitro. The expression of the HIF­1α mRNA, miR­20a­5p, and kinesin family member 5A (KIF5A) mRNA was tested using qRT-PCR. Levels of the HIF­1α, LC3I/II, P62, LAMP2, cathepsin B (CTSB) and KIF5A proteins were determined using western blotting. The CCK­8 assay was conducted to assess PC12 cell viability. DQ­Red­BSA and LysoSensor Green DND­189 dyes were employed to measure the proteolytic activity and pH of lysosomes, respectively. The interaction between miR­20a­5p and HIF­1α or KIF5A was verified by performing chromatin immunoprecipitation (ChIP) and/or dual­luciferase reporter assays. TUNEL staining was adopted to assess PC12 cell death. GFP­LC3 and RFP­GFP­LC3 probes were used to examine the autophagy status and autophagy flux of PC12 cells. A rat middle cerebral artery occlusion­reperfusion (MCAO/R) model was established to investigate the role of the HIF­1α/miR­20a­5p/KIF5A axis in ischaemic stroke in vivo. OGD/R exposure initiated PC12 cell autophagy and injury. HIF­1α expression was substantially increased in PC12 cells after OGD/R exposure. Overexpression of HIF­1α reversed the effects of OGD/R on reducing cell viability, blocking autophagy flux and inducing lysosome dysfunction. These rescue effects of HIF­1α depended on KIF5A. HIF­1α negatively regulated miR­20a­5p expression by targeting its promoter region, and miR­20a­5p directly targeted and negatively regulated the KIF5A mRNA. Overexpression of miR­20a­5p abolished the effects of HIF­1α on rescuing OGD/R­induced injury in PC12 cells. The effects of the HIF­1α/miR­20a­5p/KIF5A axis were verified in MCAO/R rats. HIF­1α protects PC12 cells from OGD/R­induced cell injury by regulating autophagy flux through the miR­20a­5p/KIF5A axis.


Assuntos
Isquemia Encefálica , Subunidade alfa do Fator 1 Induzível por Hipóxia , Cinesinas , MicroRNAs , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Animais , Apoptose , Autofagia , Catepsina B , Sobrevivência Celular , Glucose/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Cinesinas/genética , MicroRNAs/genética , Oxigênio , Células PC12 , RNA Mensageiro , Ratos , Traumatismo por Reperfusão/metabolismo
9.
J Neurochem ; 163(6): 500-516, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35997641

RESUMO

Ischemic stroke is a major global health issue. Ischemia and subsequent reperfusion results in stroke-related brain injury. Previous studies have demonstrated that nuclear-enriched abundant transcript 1 (NEATa and early growth response 1 (EGR1) are involved in ischemia reperfusion (IR) injury). In this study, we aimed to explore the roles of NEAT1/EGR1 axis as well as its downstream effector RNA binding motif protein 25 (RBM25) in cerebral IR injury. Oxygen-glucose deprivation/reperfusion (OGD/R) and middle cerebral artery occlusion (MCAO) were used to establish in vitro and in vivo models of cerebral IR injury, respectively. According to our data, NEAT1, EGR1, and RBM25 levels were elevated in OGD/R-exposed SK-N-SH and SH-SY5Y cells and cerebral cortex of MCAO mice. NEAT1, EGR1, or RBM25 knockdown effectively reduced infarct volumes and apoptosis, and improved neurological function. Mechanistically, NEAT1 directly interacted with EGR1, which restrained WW domain containing E3 ubiquitin protein ligase 1 (WWP1)-mediated ubiquitination of EGR1 and subsequently caused EGR1 accumulation. EGR1 bound to RBM25 promoter and transcriptionally activated RBM25. Rescue experiments indicated that RBM25 overexpression abolished the therapeutic effects of NEAT1 knockdown. In conclusion, this work identified a novel NEAT1/EGR1/RBM25 axis in potentiating brain injury after IR insults, suggesting a potential therapeutic target for ischemic stroke.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , MicroRNAs , Neuroblastoma , RNA Longo não Codificante , Traumatismo por Reperfusão , Humanos , Camundongos , Animais , RNA Longo não Codificante/genética , Traumatismo por Reperfusão/metabolismo , Infarto da Artéria Cerebral Média , Oxigênio/metabolismo , Apoptose/genética , Glucose/metabolismo , Motivos de Ligação ao RNA , Isquemia Encefálica/metabolismo , MicroRNAs/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
10.
ACS Appl Mater Interfaces ; 14(24): 28321-28336, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35674496

RESUMO

Octyl hydroxamic acid (OHA) was investigated as an inhibitor in H2O2-based alkaline silica dispersions for the polishing of cobalt (Co) films for interconnect applications. A combination of experiments and density functional theory (DFT) was used to investigate the inhibition effect and the mechanism of OHA on the Co surface. On the basis of the experiments, it can be proven that OHA has an inhibition effect on Co, which came from the inhibition of the cathodic reaction. The X-ray photoelectron spectroscopy (XPS) experiments show that the adsorption of OHA weakened the oxidation of the Co surface and protected the Co surface from corrosion. On the basis of the calculations, it can be proven that the OHAketone (ion) is most likely to react with the Co surface, and it can adsorb on the Co surface by Co-O bonds. This study provides important microscopic insights for understanding the corrosion protection of Co interconnect metals and helps to explain the corrosion inhibition mechanism of the organic-metal interface during the CMP process.

11.
J Hepatol ; 77(3): 710-722, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35358616

RESUMO

BACKGROUND & AIMS: Hepatic insulin resistance in obesity and type 2 diabetes was recently associated with endoplasmic reticulum (ER)-mitochondria miscommunication. These contact sites (mitochondria-associated membranes: MAMs) are highly dynamic and involved in many functions; however, whether MAM dysfunction plays a causal role in hepatic insulin resistance and steatosis is not clear. Thus, we aimed to determine whether and how organelle miscommunication plays a role in the onset and progression of hepatic metabolic impairment. METHODS: We analyzed hepatic ER-mitochondria interactions and calcium exchange in a time-dependent and reversible manner in mice with diet-induced obesity. Additionally, we used recombinant adenovirus to express a specific organelle spacer or linker in mouse livers, to determine the causal impact of MAM dysfunction on hepatic metabolic alterations. RESULTS: Disruption of ER-mitochondria interactions and calcium exchange is an early event preceding hepatic insulin resistance and steatosis in mice with diet-induced obesity. Interestingly, an 8-week reversal diet concomitantly reversed hepatic organelle miscommunication and insulin resistance in obese mice. Mechanistically, disrupting structural and functional ER-mitochondria interactions through the hepatic overexpression of the organelle spacer FATE1 was sufficient to impair hepatic insulin action and glucose homeostasis. In addition, FATE1-mediated organelle miscommunication disrupted lipid-related mitochondrial oxidative metabolism and induced hepatic steatosis. Conversely, reinforcement of ER-mitochondria interactions through hepatic expression of a synthetic linker prevented diet-induced glucose intolerance after 4 weeks' overnutrition. Importantly, ER-mitochondria miscommunication was confirmed in the liver of obese patients with type 2 diabetes, and correlated with glycemia, HbA1c and HOMA-IR index. CONCLUSIONS: ER-mitochondria miscommunication is an early causal trigger of hepatic insulin resistance and steatosis, and can be reversed by switching to a healthy diet. Thus, targeting MAMs could help to restore metabolic homeostasis. LAY SUMMARY: The literature suggests that interactions between the endoplasmic reticulum and mitochondria could play a role in hepatic insulin resistance and steatosis during chronic obesity. In the present study, we reappraised the time-dependent regulation of hepatic endoplasmic reticulum-mitochondria interactions and calcium exchange, investigating reversibility and causality, in mice with diet-induced obesity. We also assessed the relevance of our findings to humans. We show that organelle miscommunication is an early causal trigger of hepatic insulin resistance and steatosis that can be improved by nutritional strategies.


Assuntos
Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Resistência à Insulina , Hepatopatias , Animais , Cálcio/metabolismo , Comunicação , Proteínas de Ligação a DNA/metabolismo , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Retículo Endoplasmático/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Glucose/metabolismo , Humanos , Fígado/metabolismo , Hepatopatias/metabolismo , Camundongos , Mitocôndrias/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Fatores de Transcrição/metabolismo
12.
Brain Res ; 1785: 147884, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35304105

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a major neurodegenerative disorder. The functions of lncRNA RMRP have been characterized mainly in various human cancers. However, the functional network of RMRP in AD progression remains unknown. METHODS: Human serum samples, AD transgenic (Tg) mice as well as SH-SY5Y cells were used in this study. The RNA expression patterns of RMRP, miR-3142 and TRIB3 were assessed by quantitative real-time PCR (qRT-PCR). Levels of apoptosis- or autophagy-associated biomarkers and TRIB3 level were evaluated using immunohistochemistry (IHC), western blotting or immunofluorescence assays, respectively. Bioinformatics methods and luciferase assays were used to predict and validate the interactions among RMRP, miR-3142, and TRIB3. Flow cytometry, TUNEL staining and EdU assays were used to examine the apoptosis and proliferation of neurons, respectively. RESULTS: The elevated RMRP and TRIB3 expressions and activation of autophagy were observed in AD. Knockdown of RMRP restrained neuronal apoptosis and autophagy activation in vitro and in vivo. Interestingly, TRIB3 overexpression reversed the biological effects of RMRP silencing on Aß1-42-induced cell apoptosis and autophagy. Further mechanistic analysis showed RMRP acted as a sponge of miR-3142 to elevate TRIB3 level. CONCLUSION: These data illustrated that knockdown of RMRP inhibited autophagy and apoptosis via regulating miR-3142/TRIB3 axis in AD, suggesting that inhibition of RMRP maybe a therapeutic strategy for AD.


Assuntos
Doença de Alzheimer , MicroRNAs , RNA Longo não Codificante , Doença de Alzheimer/genética , Animais , Apoptose , Autofagia , Linhagem Celular Tumoral , Camundongos , MicroRNAs/metabolismo , Neurônios/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
13.
J Alzheimers Dis ; 85(4): 1783-1794, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34958029

RESUMO

BACKGROUND: Growing evidence has demonstrated that long non-coding RNAs (lncRNAs) play a critical role in Alzheimer's disease (AD), which is characterized by sustained mitochondrial dysfunction, inevitable memory loss, and cognitive decline. However, the potential function of lncRNAs MIR600 Host Gene (MIR600HG) in AD remains unanswered. OBJECTIVE: Our study aimed to investigate the role of MIR600HG and its related molecular mechanism in AD. METHODS: The expression of MIR600HG was examined by qRT-PCR. The MIR600HG interacting proteins were identified by RNA pull-down assay and mass spectrometry and verified by RNA immunoprecipitation. Immunofluorescence staining was applied to examine the colocalization of PINK1 and NEDD4L. The PINK1 level and the activation of autophagy were detected by immunoblotting. Morris water maze test was performed to evaluate cognitive decline in AD mice model. RESULTS: MIR600HG expression was elevated during aging in two different types of AD transgenic mouse models. Next, we found that increased MIR600HG directly interact with NEDD4L, which promoted PINK1 ubiquitination and degradation, and as well as autophagy activation. Additionally, MIR600HG promoted Aß production and suppressed Cytochrome C Oxidase activity. Administration of AAV-shMIR600HG restored the Cytochrome C Oxidase activity and inhibited Aß production. Furthermore, PINK1 overexpression or MIR600HG knockdown significantly ameliorated the cognitive impairment in APP/PS1 mice. PINK1 depletion recovered the spatial memory defect in the AAV-shMIR600HG injected APP/PS1 mice. CONCLUSION: MIR600HG was increased in AD and promoted AD pathogenesis. Targeting MIR600HG significantly improved cognitive function in AD mice, which could pave the way for exciting new avenues in AD therapeutic strategy research.


Assuntos
Doença de Alzheimer/metabolismo , Disfunção Cognitiva/metabolismo , Transtornos da Memória/metabolismo , Proteínas Quinases/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Autofagia , Encéfalo/patologia , Modelos Animais de Doenças , Humanos , Aprendizagem em Labirinto , Camundongos , Camundongos Transgênicos
14.
Microb Pathog ; 160: 105187, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34530073

RESUMO

Gut microbiota and amino acids that are one of their metabolites play important roles in the mechanism of pathology of Parkinson's disease (PD). It has been reported that the level of amino acids in vivo participate in neurodegeneration by regulating adaptive immune response, while the current researches on alteration of amino acids in gut microbiota are still insufficient. We hypothesized that alterations in gut microbiota might be accompanied by altered concentrations of amino acids, leading to the occurrence of PD. In this study, we collected stool samples from PD and healthy controls to analyse fecal microbiome and targeted metabolome by 16S ribosomal RNA (16S rRNA) gene sequencing and gas chromatography coupled to mass spectrometry (GC-MS). At the genus level, there was a greater abundance of Alistipes, Rikenellaceae_RC9_gut_group, Bifidobacterium, Parabacteroides, while Faecalibacterium was decreased in fecal samples from PD patients. Moreover, fecal branched chain amino acids (BCAAs) and aromatic amino acids concentrations were significantly reduced in PD patients compared to controls. Our study not only finds the abundance of certain gut microbiota in PD,but also reveals that it is related to BCAAs and aromatic amino acids. These findings are beneficial to identifying new therapeutic targets for PD by regulating diet and/or gut microbiota.


Assuntos
Microbioma Gastrointestinal , Doença de Parkinson , Fezes , Humanos , Metaboloma , RNA Ribossômico 16S/genética
15.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1866(12): 159030, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34419589

RESUMO

In the liver, contact sites between the endoplasmic reticulum (ER) and mitochondria (named MAMs) may be crucial hubs for the regulation of lipid metabolism, thus contributing to the exacerbation or prevention of fatty liver. We hypothesized that tether proteins located at MAMs could play a key role in preventing triglyceride accumulation in hepatocytes and nonalcoholic fatty liver disease (NAFLD) occurrence. To test this, we explored the role of two key partners in building MAM integrity and functionality, the glucose-regulated protein 75 (Grp75) and mitofusin 2 (Mfn2), which liver contents are altered in obesity and NAFLD. Grp75 or Mfn2 expression was either silenced using siRNA or overexpressed with adenoviruses in Huh7 cells. Silencing of Grp75 and Mfn2 resulted in decreased ER-mitochondria interactions, mitochondrial network fusion state and mitochondrial oxidative capacity, while overexpression of the two proteins induced mirror impacts on these parameters. Furthermore, Grp75 or Mfn2 silencing decreased cellular cholesterol content and enhanced triglyceride secretion in ApoB100 lipoproteins, while their overexpression led to reverse effects. Cellular phosphatidylcholine/phosphatidylethanolamine ratio was decreased only upon overexpression of the proteins, potentially contributing to altered ApoB100 assembly and secretion. Despite the opposite differences, both silencing and overexpression of Grp75 or Mfn2 induced triglyceride storage, although a fatty acid challenge was required to express the alteration upon protein silencing. Among the mechanisms potentially involved in this phenotype, ER stress was closely associated with altered triglyceride metabolism after Grp75 or Mfn2 overexpression, while blunted mitochondrial FA oxidation capacity may be the main defect causing triglyceride accumulation upon Grp75 or Mfn2 silencing. Further studies are required to decipher the link between modulation of Grp75 or Mfn2 expression, change in MAM integrity and alteration of cholesterol content of the cell. In conclusion, Grp75 or Mfn2 silencing and overexpression in Huh7 cells contribute to altering MAM integrity and cholesterol storage in opposite directions, but all promote triglyceride accumulation through distinct cellular pathways. This study also highlights that besides Mfn2, Grp75 could play a central role in hepatic lipid and cholesterol metabolism in obesity and NAFLD.


Assuntos
Apolipoproteína B-100/genética , Colesterol/metabolismo , GTP Fosfo-Hidrolases/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas Mitocondriais/genética , Hepatopatia Gordurosa não Alcoólica/genética , Linhagem Celular , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , GTP Fosfo-Hidrolases/antagonistas & inibidores , Mutação com Ganho de Função/genética , Regulação da Expressão Gênica/genética , Inativação Gênica , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Mutação com Perda de Função/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Triglicerídeos/metabolismo
16.
Sci Rep ; 11(1): 13154, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162989

RESUMO

This study aimed to identify potential novel drug candidates and targets for Parkinson's disease. First, 970 genes that have been reported to be related to PD were collected from five databases, and functional enrichment analysis of these genes was conducted to investigate their potential mechanisms. Then, we collected drugs and related targets from DrugBank, narrowed the list by proximity scores and Inverted Gene Set Enrichment analysis of drug targets, and identified potential drug candidates for PD treatment. Finally, we compared the expression distribution of the candidate drug-target genes between the PD group and the control group in the public dataset with the largest sample size (GSE99039) in Gene Expression Omnibus. Ten drugs with an FDR < 0.1 and their corresponding targets were identified. Some target genes of the ten drugs significantly overlapped with PD-related genes or already known therapeutic targets for PD. Nine differentially expressed drug-target genes with p < 0.05 were screened. This work will facilitate further research into the possible efficacy of new drugs for PD and will provide valuable clues for drug design.


Assuntos
Antiparkinsonianos/isolamento & purificação , Descoberta de Drogas , Terapia de Alvo Molecular , Doença de Parkinson/tratamento farmacológico , Antiparkinsonianos/farmacologia , Linhagem Celular , Mineração de Dados/métodos , Bases de Dados Genéticas , Bases de Dados de Produtos Farmacêuticos , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos , Transporte de Elétrons/genética , Metabolismo Energético/genética , Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Humanos , Transporte de Íons/genética , Redes e Vias Metabólicas/genética , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética , Doença de Parkinson/genética , Mapeamento de Interação de Proteínas
17.
Drug Des Devel Ther ; 14: 3143-3158, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32821084

RESUMO

INTRODUCTION: Intracerebral hemorrhage (ICH) is a devastating type of stroke with high mortality, and the effective therapies for ICH remain to be explored. Exosomes (Exos) have been found to play important roles in cell communication by transferring molecules, including microRNAs (miRNAs/miRs). MiRNAs are critical regulators of genes involved in many various biological processes and have been demonstrated to aggravate or alleviate brain damages induced by ICH. The aim of the present study was to investigate the effect of Exos derived from miR-146a-5p-enriched bone marrow mesenchymal stem cells (BMSCs-miR-146a-5p-Exos) on experimental ICH. METHODS: ICH was induced in adult male Sprague-Dawley rats by an intrastriatal injection of collagenase type IV. At 24 h after surgery, Exos were administrated. For detecting apoptotic cells, TUNEL staining was performed using an in situ Cell Death Detection Kit. Fluoro-Jade B staining was performed to detect degenerating neurons. Immunofluorescence assay was performed to detect the expression of myeloperoxidase (MPO) and OX-42. The binding of miR-146a-5p and its target genes was confirmed by luciferase reporter assay. RESULTS: At 24 h after surgery, BMSCs-miR-146a-5p-Exos administration significantly improved neurological function, reduced apoptotic and degenerative neurons, and inhibited inflammatory response. Furthermore, miR-146a-5p-enriched Exos obviously inhibited the M1 polarization of microglia after ICH in rats, accompanied by the reduced expression of pro-inflammatory mediators releasing by M1 microglia including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and monocyte chemoattractant protein-1 (MCP-1). Finally, we observed that miR-146a-5p directly targeted interleukin-1 receptor-associated kinase1 (IRAK1) and nuclear factor of activated T cells 5 (NFAT5), which contributed to the inflammation response and the polarization of M1 microglia/macrophages. CONCLUSION: We demonstrated that miR-146a-5p-riched BMSCs-Exos could offer neuroprotection and functional improvements after ICH through reducing neuronal apoptosis, and inflammation associated with the inhibition of microglial M1 polarization by downregulating the expression of IRAK1 and NFAT5.


Assuntos
Apoptose , Hemorragia Cerebral/metabolismo , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Animais , Hemorragia Cerebral/induzido quimicamente , Injeções Intraventriculares , Masculino , Metaloproteinase 9 da Matriz/administração & dosagem , Metaloproteinase 9 da Matriz/metabolismo , Ratos , Ratos Sprague-Dawley
18.
Sensors (Basel) ; 20(16)2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32824802

RESUMO

Vehicle detection is an indispensable part of environmental perception technology for smart cars. Aiming at the issues that conventional vehicle detection can be easily restricted by environmental conditions and cannot have accuracy and real-time performance, this article proposes a front vehicle detection algorithm for smart car based on improved SSD model. Single shot multibox detector (SSD) is one of the current mainstream object detection frameworks based on deep learning. This work first briefly introduces the SSD network model and analyzes and summarizes its problems and shortcomings in vehicle detection. Then, targeted improvements are performed to the SSD network model, including major advancements to the basic structure of the SSD model, the use of weighted mask in network training, and enhancement to the loss function. Finally, vehicle detection experiments are carried out on the basis of the KITTI vision benchmark suite and self-made vehicle dataset to observe the algorithm performance in different complicated environments and weather conditions. The test results based on the KITTI dataset show that the mAP value reaches 92.18%, and the average processing time per frame is 15 ms. Compared with the existing deep learning-based detection methods, the proposed algorithm can obtain accuracy and real-time performance simultaneously. Meanwhile, the algorithm has excellent robustness and environmental adaptability for complicated traffic environments and anti-jamming capabilities for bad weather conditions. These factors are of great significance to ensure the accurate and efficient operation of smart cars in real traffic scenarios and are beneficial to vastly reduce the incidence of traffic accidents and fully protect people's lives and property.

19.
Cancer Cell Int ; 20: 327, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32699526

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) has been extensively reported play important roles in regulating the development and progression of cancers, including Glioblastoma (GBM). LINC01426 is a novel lncRNA that has been identified as an oncogenic gene in GBM. Herein, we attempted to elucidate the detailed functions and underlying mechanisms of LINC01426 in GBM. METHODS: LINC01426 expression in GBM cell lines and tissues were detected by quantitative real-time PCR (qRT-PCR). Cell Counting Kit-8 (CCK8) assays, colony formation assays, subcutaneous tumor formation assays were utilized to investigate the biological functions of LINC01426 in GBM. Dual-luciferase reporter assays, RNA immunoprecipitation (RIP) and bioinformatic analysis were performed to determine the underlying mechanisms. RESULTS: LINC01426 is up-regulated in malignant GBM tissues and cell lines and it is capable to promote GBM cell proliferation and growth. Mechanistically, LINC01426 serves as a molecular sponge to sequester the miR345-3p and thus enhancing the level of VAMP8, an oncogenic coding gene, to promote GBM progression. CONCLUSIONS: Our results revealed the detailed mechanisms of LINC01426 facilitated cell proliferation and growth in GBM and report the clinical value of LINC01426 for GBM prognosis and treatment.

20.
Sensors (Basel) ; 20(13)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610635

RESUMO

Pedestrian detection is an important aspect of the development of intelligent vehicles. To address problems in which traditional pedestrian detection is susceptible to environmental factors and are unable to meet the requirements of accuracy in real time, this study proposes a pedestrian detection algorithm for intelligent vehicles in complex scenarios. YOLOv3 is one of the deep learning-based object detection algorithms with good performance at present. In this article, the basic principle of YOLOv3 is elaborated and analyzed firstly to determine its limitations in pedestrian detection. Then, on the basis of the original YOLOv3 network model, many improvements are made, including modifying grid cell size, adopting improved k-means clustering algorithm, improving multi-scale bounding box prediction based on receptive field, and using Soft-NMS algorithm. Finally, based on INRIA person and PASCAL VOC 2012 datasets, pedestrian detection experiments are conducted to test the performance of the algorithm in various complex scenarios. The experimental results show that the mean Average Precision (mAP) value reaches 90.42%, and the average processing time of each frame is 9.6 ms. Compared with other detection algorithms, the proposed algorithm exhibits accuracy and real-time performance together, good robustness and anti-interference ability in complex scenarios, strong generalization ability, high network stability, and detection accuracy and detection speed have been markedly improved. Such improvements are significant in protecting the road safety of pedestrians and reducing traffic accidents, and are conducive to ensuring the steady development of the technological level of intelligent vehicle driving assistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...