Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(12)2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38136674

RESUMO

Hypsizygus marmoreus has become one of the most popular edible mushrooms due to its high nutritional and economic value. Previous researchers found that Serratia odorifera could promote the growth of H. marmoreus by producing and secreting some of its inducers. However, the specific mechanism of action was still unclear. In this study, we found that the exogenous addition of sterile fermentation filtrate (HZSO-1), quorum sensing (QS) signaling molecules, 3-oxo-C6-HSL, cyclo(Pro-Leu), and cyclo(Tyr-Leu) could significantly promote the growth of H. marmoreus, increase the number of clamp junctions, and the diameter of mycelium (p < 0.05). In addition, non-targeted metabolomic analysis revealed that 706 metabolites were detected in the treated group. Of these, 307 metabolites were significantly different (p < 0.05). Compared with the control, 54 and 86 metabolites were significantly increased and decreased in the HZSO-1 group, respectively (p < 0.05). We speculate that the sterile fermentation filtrate of S. odorifera could mediate the carbohydrate and amino acid metabolism of H. marmoreus by influencing the pentose phosphate pathway (PPP) to increase the energy supply for the growth and development of the mycelium. The above results will further reveal the growth-promoting mechanism of S. odorifera on H. marmoreus.


Assuntos
Agaricales , Fermentação , Serratia
2.
Int J Biol Macromol ; 251: 126411, 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598819

RESUMO

Our previous study found that 1-octen-3-ol fumigation treatment could effectively induce the resistance of peach fruit diseases. However, 1-octen-3-ol is a liquid fumigant, which is not conducive to storage and application. Herein, the gel of 1 % agar compound with 1 % curdlan was used as a novel material for covering 1-octen-3-ol. The interaction of agar and curdlan was promoted by adding 1-octen-3-ol, leading to a higher thermostability compared to single-component antibacterial gels. Moreover, 1-octen-3-ol resulted in changes in the internal structure and mechanical properties of gel to form a pore-like structure, which is beneficial to the retention and release of 1-octen-3-ol. Additionally, the 2 % agar gel containing 1-octen-3-ol had the best inhibitory effect on the mycelial growth of Monilinia fructicola and Rhizopus stolonifer in vitro, and the compound hydrogel of 1 % agar and 1 % curdlan with 1-octen-3-ol could most effectively inhibit brown rot and soft rot caused by these two pathogens in vivo. Overall, the data indicated that the novel 1-octen-3-ol-loaded agar/curdlan hydrogels could effectively retain and release 1-octen-3-ol, and induce the resistance of peach fruit diseases.

3.
Int J Biol Macromol ; 247: 125749, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37429350

RESUMO

In this study, we first reported a high-quality chromosome-scale genome of Tremella fuciformis using Pacbio HiFi sequencing combining Hi-C technology. According to 21.6 Gb PacBio HiFi reads and 18.1 Gb Hi-C valid reads, we drafted a T. fuciformis genome of 27.38 Mb assigned to 10 chromosomes, with the contig N50 of 2.28 Mb, GC content of 56.51 %, BUSCOs completeness of 93.1 % and consensus quality value of 33.7. The following annotation of genomic components predicted 5,171 repeat sequences, 283 RNAs, and 10,150 protein-coding genes. Next, the intracellular proteins at three differential life stages of T. fuciformis (conidium, hyphal and fruiting body) were identified by the shot-gun proteomics. 6,823 canonical proteins (68.1 % of predicted proteome) have been identified with protein FDR cut-off of 0.01, establishing the first proteome draft of predicted protein-coding genes of T. fuciformis. Finally, 24 T. fuciformis polysaccharides (TPS) biosynthesis-related genes in mycelia were identified by comparative transcriptomics and proteomics, which may be more active than in conidium and revealed the TPS biosynthesis process in mycelia. This present study elucidated T. fuciformis genome composition and organization, drafted its associated proteome, and provided a genome-view of TPS biosynthesis, which will be a powerful platform for biological and genetic studies in T. fuciformis.


Assuntos
Basidiomycota , Proteoma , Proteoma/genética , Basidiomycota/genética , Cromossomos , Genoma , Filogenia
4.
J Fungi (Basel) ; 9(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36675890

RESUMO

Pleurotus eryngii is a commercially important edible fungus with high nutritional and economic value. However, few functional studies have examined key genes affecting the growth and development of P. eryngii. In this study, transformed strains, including over-expression (PeGNAI-OE) and RNA interference (PeGNAI-RNAi) lines, were constructed to elucidate the role of GNAI in P. eryngii growth. GNAI expression was found to affect the mycelial growth and the number of clamp connections. Moreover, the transformed strains were shown to have higher endogenous cAMP levels, thus affecting amylase and laccase activity. Fruiting experiments showed that GNAI expression revealed the formation of P. eryngii primordia and the number of buttons, while transcription analysis identified GNAI gene involvement in the growth and development of P. eryngii. Seven downstream genes regulated by GNAI were differentially expressed in PeGNAI-OE and PeGNAI-RNAi compared to wild type (WT). These genes may be related to mycelial growth and enzyme activity. They were involved in the MAPK signaling pathway, inositol phosphate metabolism, ascorbate, aldarate metabolism, and starch and sucrose metabolism. In summary, GNAI performs different physiological functions in regulating the growth and development of P. eryngii. Importantly, the molecular mechanisms of GNAI regulatory function are relatively complex and need further study.

5.
Food Chem ; 392: 133299, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-35640428

RESUMO

Gamma-aminobutyric acid (GABA), a widely distributed metabolite in prokaryotes and eukaryotes, has many functions for plants in stress responses. In this study, hypotonic treatment with 10 mmol L-1 GABA in cherry tomato induced resistance to Botrytis cinerea with markedly lower disease incidence and lesion diameter, led to endogenous nitric oxide (NO) tansient accumulation before inoculation the pathogen then decrease after inoculation, and enhanced the content of arginine (Arg) and glutamic acid (Glu). The resistance of fruit treated with a NO scavenger, carboxy-2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), was significantly reduced. Moreover, the enzyme activity and gene expression of S-nitrosoglutathione reductase (GSNOR) were enhanced following endogenous NO increased. The endogenous NO level was excessively high after treatment with a GSNOR scavenger, N6022, making the fruit more susceptible to pathogen. Similarly, after break down of SlGSNOR, fruit had much higher endogenous NO and lower disease resistance. However, overexpression of SlGSNOR exhibited opposite consequences. These results suggest that a suitable level of NO is beneficial for enhancing disease resistance, and GABA can help tomatoes maintain NO equilibrium by regulating GSNOR.


Assuntos
Solanum lycopersicum , Botrytis/metabolismo , Resistência à Doença/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Óxido Nítrico/metabolismo , Oxirredutases/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia
6.
Front Microbiol ; 13: 787628, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35173699

RESUMO

The effects of biological factors on the vegetative growth process of mushrooms remain largely unexplored. We investigated the bacterial community in different growth stages of Pleurotus eryngii by high-throughput sequencing technology to explore the relationship between interacting bacteria and the growth and development of P. eryngii. We found significant variances in mushroom interacting association bacteria (MIAB) compositions among the samples from different growth stages, and 410 genera were identified. The bacteria in the full-bag and post-ripe stages were shifted to the biocontrol and growth-promotion ones. The mushroom growth-promoting bacteria (MGPB) were also isolated successfully and identified as B. cereus Bac1. The growth speed and density of mycelial pellets of P. eryngii, and activities of two exoenzymes (laccase and amylase), were analyzed by adding the different volumes of cell-free fermentation broth of B. cereus Bac1 to fungal culture media. The results showed that when a 5 mL cell-free fermentation broth was used, the growth speed of P. eryngii hyphae was enhanced by 1.15-fold over the control and reached 0.46 mm/h. The relative activity of laccase and amylase was increased by 26.9 and 43.83%. Our study revealed that the abundant interacting bacteria coexist with P. eryngii hyphae. Moreover, the abundance of some bacteria exhibiting a positive correlation with the growth periods of their host fungi can effectively promote the growth of the host, which will provide technical supports on the high-efficiency production of P. eryngii in factory cultivation.

7.
Front Plant Sci ; 11: 543, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670301

RESUMO

Nitric oxide (NO), a signaling molecule, participates in defense responses during plant-pathogen interactions. S-Nitrosoglutathione (GSNO) is found to be an active intracellular NO storage center and regulated by S-nitrosoglutathione reductase (GSNOR) in plants. However, the role of GSNOR in NO-induced disease resistance is not clear. In this research, the effects of NO and GSNOR inhibitor (N6022) on the defense response of harvested peach fruit to Monilinia fructicola infection were investigated. It was found that the disease incidence and lesion diameter of peach fruits were markedly (P < 0.05) reduced by NO and GSNOR inhibitor. However, the expression of GSNOR was significantly inhibited (P < 0.05) by NO only during 2-6 h. Analyses using iodo-TMT tags to detect the nitrosylation sites of GSNOR revealed that the sulfhydryl group of the 85-cysteine site was nitrosylated after NO treatment in peach fruit at 6 and 12 h, suggesting that exogenous NO enhances disease resistance via initial inhibition of gene expression and the S-nitrosylation of GSNOR, thereby inhibiting GSNOR activity. Moreover, NO and GSNOR inhibitor enhanced the expression of systemic acquired resistance (SAR)-related genes, such as pathogenesis-related gene 1 (PR1), nonexpressor of PR1 (NPR1), and TGACG-binding factor 1 (TGA1). These results demonstrated that S-nitrosylation of GSNOR protein and inhibition of GSNOR activity contributed to the enhanced disease resistance in fruit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...