Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 251(Pt 2): 118778, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38527721

RESUMO

Copper contaminant generated from mining and industrial smelting poses potential risks to human health. Biochar, as a low-energy and cost-effective biomaterial, holds value in Cu remediation. Spectral Induced Polarization (SIP) technique is employed in this study to monitor the Cu remediation processes of by biochar in column experiments. Cation exchange at low Cu2+ concentrations and surface complexation at high Cu2+ concentrations are identified as the major mechanisms for copper retention on biochar. The normalized chargeability (mn) from SIP signals linearly decreased (R2 = 0.776) with copper retention under 60 mg/L Cu influent; while mn linearly increases (R2 = 0.907, 0.852) under high 300 and 700 mg/L Cu influents. The characteristic polarizing unit sizes (primarily the pores adsorbing Cu2+) calculated from Schwartz equation match well with experimental results by mercury intrusion porosimetry (MIP). It is revealed that Cu2+ was driven to small pores (∼3 µm) given high concentration gradient (influent Cu2+ concentration of 700 mg/L). Comparing to activated carbon, biochar is identified as an ideal adsorbent for Cu remediation, given its high adsorption capacity, cost-effectiveness, carbon-sink ability, and high sensitivity to SIP responses - the latter facilitates its performance assessment.


Assuntos
Carvão Vegetal , Cobre , Cobre/química , Carvão Vegetal/química , Adsorção , Recuperação e Remediação Ambiental/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise
2.
Environ Geochem Health ; 46(1): 1, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38063932

RESUMO

The municipal solid waste (MSW) landfill in Hangzhou, China utilized zeolite and activated carbon (AC) as permeable reactive barrier (PRB) fill materials to remediate groundwater contaminated with MSW leachates containing ammonium, chemical oxygen demand (COD), and heavy metals. The spectral induced polarization (SIP) technique was chosen for monitoring the PRB because of its sensitivity to pore fluid chemistry and mineral-fluid interface composition. During the experiment, authentic groundwater collected from the landfill site was used to permeate two columns filled with zeolite and AC, and the SIP responses were measured at the inlet and outlet over a frequency range of 0.01-1000 Hz. The results showed that zeolite had a higher adsorption capacity for COD (7.08 mg/g) and ammonium (9.15 mg/g) compared to AC (COD: 2.75 mg/g, ammonium: 1.68 mg/g). Cation exchange was found to be the mechanism of ammonium adsorption for both zeolite and AC, while FTIR results indicated that π-complexation, π-π interaction, and electrostatic attraction were the main mechanisms of COD adsorption. The Cole-Cole model was used to fit the SIP responses and determine the relaxation time (τ) and normalized chargeability (mn). The calculated characteristic diameters of zeolite and AC based on the Schwarz equation and relaxation time (τ) matched the pore sizes observed from SEM and MIP, providing valuable information on contaminant distribution. The mn of zeolite was positively linear with adsorbed ammonium (R2 = 0.9074) and COD (R2 = 0.8877), while the mn of AC was negatively linear with adsorbed ammonium (R2 = 0.8192) and COD (R2 = 0.7916), suggesting that mn could serve as a surrogate for contaminant saturation. The laboratory-based real-time non-invasive SIP results showed good performance in monitoring saturation and provide a strong foundation for future field PRB monitoring.


Assuntos
Compostos de Amônio , Água Subterrânea , Poluentes Químicos da Água , Zeolitas , Resíduos Sólidos , Poluentes Químicos da Água/análise , Zeolitas/química , Carvão Vegetal , Água Subterrânea/química
3.
Photodiagnosis Photodyn Ther ; 42: 103617, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37209763

RESUMO

Radioactive iodine-125 seed implantation has emerged as an effective treatment approach for locally advanced oral cancer. Nevertheless, some brachytherapy associated side reactions were reported, even at a relatively low initial radiation treatment volume. Radiogenic oral mucositis has been a concerning side effect of this treatment method. Photodynamic therapy (PDT) is a potential viable therapeutic strategy of oral mucositis. Herein, we report a case of 73-year-old male patient with ventral tongue and floor-of-the mouth cancer treated by iodine-125 implantation. Thereafter, this patient experienced radiation-induced oral mucositis. After being treated with four sessions of topical 5-aminolevulinic acid (ALA) PDT, this case was completely cured and followed up for 6-month with no recurrence.


Assuntos
Braquiterapia , Neoplasias Bucais , Fotoquimioterapia , Estomatite , Neoplasias da Glândula Tireoide , Masculino , Humanos , Idoso , Fármacos Fotossensibilizantes/farmacologia , Radioisótopos do Iodo/efeitos adversos , Fotoquimioterapia/métodos , Braquiterapia/efeitos adversos , Neoplasias da Glândula Tireoide/tratamento farmacológico , Ácido Aminolevulínico/efeitos adversos , Neoplasias Bucais/tratamento farmacológico , Estomatite/tratamento farmacológico , Estomatite/etiologia , Administração Tópica
4.
Toxics ; 11(3)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36976986

RESUMO

In this paper, the adsorption process of copper ions on activated carbon (AC) was simulated in a column test. It was deduced that it is consistent with the pseudo-second-order model. Cation exchange was observed to be the major mechanism of Cu-AC interactions through scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) measurements. Adsorption isotherms were fitted well using the Freundlich model. Adsorption thermodynamics at 298, 308, 318 K demonstrated that the adsorption process is spontaneous and endothermic. Spectral induced polarization (SIP) technique was used to monitor the adsorption process, and the double Cole-Cole model was used to analyze the SIP results. The normalized chargeability was proportional to the adsorbed copper content. Two measured relaxation times from the SIP testing were converted into the average pore sizes of 2, 0.8, 0.6, 100-110, 80-90, and 53-60 µm by the Schwartz equation, which are consistent with the measured pore sizes from both mercury intrusion porosimetry and scanning electron microscopy (SEM). The reduction in the pore sizes by SIP during the flow-through tests suggested that the adsorbed Cu2+ gradually migrated into small pores as with continued permeation of the influent. These results showcased the feasibility of using SIP technique in engineering practice involving the monitoring of copper contamination in land near a mine waste dump or in adjacent permeable reactive barriers.

5.
Materials (Basel) ; 15(3)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35160797

RESUMO

Setting times, as the early-age properties of cement-based materials, are important properties to ensure the quality and long-term performance of engineering structures. To determine the initial and final setting times of cementitious materials, the compressive wave velocity and shear wave velocity of six early-age mortar samples were monitored. Their time evolution curves of Young's modulus, shear modulus, bulk modulus, and Poisson's ratio were then calculated and analyzed. The signature times of the derivatives of the Poisson's ratio evolution curves correlate well with the initial and final setting times, and the remarkably high coefficient of determination values relative to the data from this study are higher than those presented in the current literature. The proposed derivative method on the Poisson's ratio evolution curve is as good as the derivative methods from vs. evolution curves used by prior studies for the estimation of both the initial and final setting times of the early-age properties of cement-based materials. The formation and subsequent disappearance of ettringite of low Poisson's ratio were postulated to cause the initial dip in the Poisson's ratio evolution curves.

6.
Sci Total Environ ; 800: 149641, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426370

RESUMO

Groundwater contamination with iron caused by mining and landfill activities has fueled the development of remediation strategies. Permeable reactive barriers (PRBs) are commonly applied in subsurface remediation because of their high removal effect and low costs. Spectral induced polarization (SIP) technique has been approved for its nondestructive ability to monitor the geochemical processes in porous media. In this study, SIP technique was applied for monitoring iron remediation by limestone at column scale. The chemical analysis showed the pH of the porous fluid increased - attributed to the dissolution of limestone, which promoted the precipitation of iron. The precipitate phases included both γ-FeOOH and Fe2O3 based on X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) results. The micro computed tomography (CT) technique investigated the uneven distribution of the precipitates in the column, which indicated the existence of preferential flow. SIP signals revealed the quantity of the accumulated iron precipitates, which was proved by the chemical measurement and calculation. SIP signals also derived the time evolution of both the average precipitate size and size distribution, which elucidated the processes of precipitate crystal growth and aggregation during Fe flow-through. Above results suggest that SIP holds the promise of monitoring the engineering barrier performance.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Carbonato de Cálcio , Ferro , Poluentes Químicos da Água/análise , Microtomografia por Raio-X
7.
J Hazard Mater ; 411: 124605, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-33465543

RESUMO

Soil and groundwater contamination with lead (Pb) poses serious challenges for the environment. Activated carbon (AC) and biochar have huge potential application in the in-situ remediation processes through permeable reactive barriers (PRB). Spectral induced polarization (SIP) technique recently showed promises in nondestructively monitoring the spatio-temporal characteristics of physical, chemical and biological processes in porous media. In this study SIP technique was used for monitoring Pb remediation by AC and biochar in column scale. The calculated characteristic grain/pore size evolutions from SIP signals on AC, agreed well with the size of precipitates measured by SEM and mercury intrusion porosimetry (MIP) methods. The content increment process of the retained Pb on AC was also recorded via the magnitude increment of the imaginary conductivity. The mechanisms of Pb-AC and Pb-biochar interactions were investigated using SEM-EDS, TEM, FTIR, XRD, and XPS measurements. It showed that AC immobilizes through physical adsorption and precipitation, whereas complexation with functional groups is the remediation mechanism for biochar. Furthermore, the observed SIP responses of both AC and biochar are two orders of magnitude higher than those of typical natural soils or silica materials. This distinct difference is an additional advantage for the field application of SIP technique in PRB scenarios.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...