Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Discov ; 9(1): 127, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059726

RESUMO

Sestrins are a small gene family of pleiotropic factors whose actions promote cell adaptation to a range of stress conditions. In this report we disclose the selective role of Sestrin2 (SESN2) in dampening aerobic glycolysis to adapt to limiting glucose conditions. Removal of glucose from hepatocellular carcinoma (HCC) cells inhibits glycolysis associated with the downregulation of the rate-limiting glycolytic enzyme hexokinase 2 (HK2). Moreover, the accompanying upregulation of SESN2 through an NRF2/ATF4-dependent mechanism plays a direct role in HK2 regulation by destabilizing HK2 mRNA. We show SESN2 competes with insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3) for binding with the 3'-UTR region of HK2 mRNA. Interactions between IGF2BP3 and HK2 mRNA result in their coalescence into stress granules via liquid-liquid phase separation (LLPS), a process which serves to stabilize HK2 mRNA. Conversely, the enhanced expression and cytoplasmic localization of SESN2 under glucose deprivation conditions favors the downregulation of HK2 levels via decreases in the half-life of HK2 mRNA. The resulting dampening of glucose uptake and glycolytic flux inhibits cell proliferation and protect cells from glucose starvation-induced apoptotic cell death. Collectively, our findings reveal an intrinsic survival mechanism allowing cancer cells to overcome chronic glucose shortages, also providing new mechanistic insights into SESN2 as an RNA-binding protein with a role in reprogramming of cancer cell metabolism.

2.
EMBO Rep ; 24(3): e55683, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36660859

RESUMO

Unveiling the principles governing embryonic stem cell (ESC) differentiation into specific lineages is critical for understanding embryonic development and for stem cell applications in regenerative medicine. Here, we establish an intersection between LIF-Stat3 signaling that is essential for maintaining murine (m) ESCs pluripotency, and the glycolytic enzyme, the platelet isoform of phosphofructokinase (Pfkp). In the pluripotent state, Stat3 transcriptionally suppresses Pfkp in mESCs while manipulating the cells to lift this repression results in differentiation towards the ectodermal lineage. Pfkp exhibits substrate specificity changes to act as a protein kinase, catalyzing serine phosphorylation of the developmental regulator Lin41. Such phosphorylation stabilizes Lin41 by impeding its autoubiquitination and proteasomal degradation, permitting Lin41-mediated binding and destabilization of mRNAs encoding ectodermal specification markers to favor the expression of endodermal specification genes. This provides new insights into the wiring of pluripotency-differentiation circuitry where Pfkp plays a role in germ layer specification during mESC differentiation.


Assuntos
Fosfofrutoquinases , Proteínas Quinases , Gravidez , Feminino , Camundongos , Animais , Proteínas Quinases/metabolismo , Fosfofrutoquinases/metabolismo , Células-Tronco Embrionárias/metabolismo , Diferenciação Celular/genética , Transdução de Sinais , Células-Tronco Embrionárias Murinas/metabolismo
3.
Sci Adv ; 7(13)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33762340

RESUMO

Glutamine constitutes an essential source of both carbon and nitrogen for numerous biosynthetic processes. The first and rate-limiting step of glutaminolysis involves the generation of glutamate from glutamine, catalyzed by glutaminase-1 (GLS1). Shortages of glutamine result in reductions in GLS1, but the underlying mechanisms are not fully known. Here, we characterize a long noncoding RNA, GIRGL (glutamine insufficiency regulator of glutaminase lncRNA), that is induced upon glutamine starvation. Manipulating GIRGL revealed a relationship between its expression and the translational suppression of GLS1. Cellular GIRGL levels are balanced by a combination of transactivation by c-JUN together with negative stability regulation via HuR/Ago2. Increased levels of GIRGL in the absence of glutamine drive formation of a complex between dimers of CAPRIN1 and GLS1 mRNA, serving to promote liquid-liquid phase separation of CAPRIN1 and inducing stress granule formation. Suppressing GLS1 mRNA translation enables cancer cells to survive under prolonged glutamine deprivation stress.

4.
Biotechnol Lett ; 39(8): 1129-1139, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28527118

RESUMO

OBJECTIVES: To analyze the transcriptome of Spodoptera frugiperda 9 (Sf9) cells infected with AcMNPV or AcMNPV-BmK IT. RESULTS: A comprehensive transcriptome profile for Sf9 cells infected with AcMNPV or AcMNPV-BmK IT is shown. 43127572, 46529744 and 47235310 RNA-Seq profiles permitted the quantification of expression levels for control (C), AcMNPV-BmK IT treatment (ABT) and AcMNPV treatment (AT) groups. There were 997 up-regulated or down-regulated candidate genes with significant different expression level in these treatment groups. CONCLUSION: These results provide a broad spectrum of candidate genes that are critically involved in the molecular regulation mechanism of Sf9 cells infected with AcMNPV-BmK IT.


Assuntos
Baculoviridae/genética , Genes de Insetos/genética , Células Sf9/metabolismo , Células Sf9/virologia , Transcriptoma/genética , Animais , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Nucleopoliedrovírus/genética , Venenos de Escorpião/genética , Venenos de Escorpião/metabolismo , Venenos de Escorpião/farmacologia , Células Sf9/imunologia , Transcriptoma/efeitos dos fármacos
5.
Biotechnol Lett ; 38(12): 2059-2069, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27578392

RESUMO

OBJECTIVES: To analyze the anti-insect mechanism of viral pesticide AcMNPV-BmK IT(P10/PH) in the host Spodoptera frugiperda 9 (Sf9) cells. RESULTS: Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV)- mediated expression of BmK IT, regulated by P10 protein promoter (P10) and polyhedrosis promoter (PH), promoted the replication of progeny virus in host Sf9 cells. AcMNPV-BmK IT(P10) could accelerate the budding process (or speed) of budded virus (BV) in Sf9 cells. The impact of AcMNPV-BmK IT(P10) on the nuclear polymerization of filamentous actin (F-actin) participated in regulating the accelerated budding process. Unexpectedly, both AcMNPV-BmK IT(P10) and AcMNPV-BmK IT(PH) delayed the nuclear polymerization of F-actin and promoted the clearance of F-actin in the nucleus. SfP53, an important apoptosis factor, was involved in the regulation of AcMNPV-BmK IT(P10/PH) in Sf9 cells. AcMNPV-BmK IT(P10/PH) could also delay and promote the nuclear recruitment of SfP53 after 27 h post infection (h p.i.). CONCLUSION: SfP53 and F-actin are the targets of viral pesticide AcMNPV-BmK IT (P10/PH) in host Sf9 cells, which provides the experimental basis for the development of recombinant baculovirus biopesticides.


Assuntos
Actinas/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Animais , Western Blotting , Imunofluorescência , Gliceraldeído-3-Fosfato Desidrogenases/genética , Nucleopoliedrovírus/metabolismo , Nucleopoliedrovírus/patogenicidade , Praguicidas/metabolismo , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Sf9
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...