Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Braz J Microbiol ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38802686

RESUMO

Plant-fungus symbioses have functional relevance during plant growth and development. However, it is still unknown whether the endosphere fungi in mature plants originated from soils or seeds. To elucidate the origination of endosphere fungi in mature rice roots, the fungal communities in surface sterilized roots and shoots of mature rice plants germinated in soils, rhizosphere soils and seedlings germinated under sterile conditions were analyzed by Illumina-based sequencing and compared. Total 62 fungal OTUs shared in the seedlings, shoots and roots, 126 OTUs shared in the rhizosphere soils, shoots and roots. Fungal OTUs coexisted in the four types of samples belonged to genera of Rhizophagus, Trichoderma, Fusarium, Atractiella, Myrmecridium, Sporothrix, Microdochium, Massariosphaeria, and Phialemonium. The principle component analysis (PCA) and NMDS plot suggested that the fungal community structure in rhizosphere soils was different from that in seedlings significantly. Rhizosphere soil, shoot and root contained more similar fungal community. The fungal community in seedling was similar to that in shoot and root of mature plants. The results suggested that endophytic fungal communities in mature rice plants originated from both seedlings and rhizosphere soils, and more fungal taxa originated from rhizosphere soils. Mature rice plants contain mycobiome transmitted vertically from seeds, which suggests that inoculation of endophytic fungi isolated from seedlings might be an effective way to introduce beneficial fungal inoculants into rice plants successfully.

2.
Antonie Van Leeuwenhoek ; 116(9): 845-853, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37247101

RESUMO

A novel actinomycete, designated strain q2T, was isolated from the saline-alkaline soil, collected from Daqing, Heilongjiang province, China. The results of phylogenetic analysis based on the 16S rRNA gene sequences indicated that strain q2T belongs to the genus Isoptericola, and showed the highest sequence similarity to Isoptericola halotolerans KCTC 19046T (98.48%) and Isoptericola chiayiensis KCTC 19740T (98.13%), respectively. The average nucleotide identity values between strain q2T and other members of the genus Isoptericola were lower than 95% recommended for distinguishing novel prokaryotic species. Cells of strain q2T were Gram-staining-positive, aerobic, non-motile, rod-shaped and non-spore-forming. Colonies of strain q2T were golden-yellow pigmented, tidy edged and smooth surfaced. Growth occurred at 15-37 °C (optimum, 29 °C), pH 7.0-10.0 (optimum, pH 8.0). The predominant respiratory quinones were MK-9(H4) and MK-9(H2). The main detected polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, and phosphatidylinositol mannoside. The peptidoglycan compositions were L-alanine, D-aspartic, L-glutamic acid and L-lysine (type A4α). The major cellular fatty acids (> 10%) were anteiso-C15:0, iso-C15:0, and anteiso-C17:0. The G+C content of the genomic DNA was determined to be 69.7%. Based on the phenotypic, physiological, genotypic, and phylogenetic data, strain q2T represents a novel species of the genus Isoptericola, for which the name Isoptericola croceus sp. nov. is proposed. The type strain is q2T (= GDMCC 1.2923T = KCTC 49759T).


Assuntos
Actinobacteria , Actinomycetales , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Solo/química , DNA Bacteriano/química , Ácidos Graxos/análise , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana
3.
Front Microbiol ; 13: 1013973, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466649

RESUMO

In our previous study of 2,130 Chinese patients with coronary heart disease (CHD), we found that tryptophan (TRP) metabolites contributed to elevated risks of death. Many TRP-derived metabolites require the participation of intestinal bacteria to produce, and they play an important role in the pathogenesis of metabolic diseases such as CHD. So it is necessary to metabolize TRP into beneficial metabolites against CHD or prevent the production of harmful metabolites through external intervention. Indole-3-butyric acid (IBA) may be a key point of gut microbiota that causes TRP metabolism disorder and affects major adverse cardiovascular events in CHD. Therefore, this study aimed to develop a method based on in vitro culture bacteria to evaluate the effects of IBA on specific microbial metabolites quickly. We detected the concentrations of TRP and its metabolites in 11 bacterial strains isolated from feces using liquid chromatography-mass spectrometry, and selected Clostridium sporogenes as the model strain. Then, IBA was used in our model to explore its effect on TRP metabolism. Results demonstrated that the optimal culture conditions of C. sporogenes were as follows: initial pH, 6.8; culture temperature, 37°C; and inoculum amount, 2%. Furthermore, we found that IBA increases the production of TRP and 5-HIAA by intervening TRP metabolism, and inhibits the production of KYNA. This new bacteria-specific in vitro model provides a flexible, reproducible, and cost-effective tool for identifying harmful agents that can decrease the levels of beneficial TRP metabolites. It will be helpful for researchers when developing innovative strategies for studying gut microbiota.

4.
Curr Microbiol ; 79(10): 301, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002665

RESUMO

A novel bacterium, designated strain APA_H-1(4)T, was isolated from the saline-alkaline soil, Zhaodong, Heilongjiang Province, China. Phenotypic and chemotaxonomic analyses, and whole-genome sequencing were used to determine the taxonomic position of the strain. Phylogenetic analysis indicated that the isolate belongs to the genus Oceanobacillus, and showed the highest sequence similarity to O. damuensis KCTC 33146T (98.35%, similarity) and 'O. massiliensis' DSM 24644 (98.32%). The average nucleotide identity values between strain APA_H-1(4)T and other members of the genus Oceanobacillus were lower than 82% recommended for distinguishing novel prokaryotic species. The digital DNA-DNA hybridization values of strain APA_H-1(4)T with O. damuensis KCTC 33146T and 'O. massiliensis' DSM 24644 were 13.60 and 17.60%, respectively. Cells of strain APA_H-1(4)T were Gram-staining positive, motile, aerobic, spore-forming rods (0.5-0.7 × 1.8-2.6 µm) with flagella. The growth was found to occur optimally at 37 °C. The whole-cell hydrolysate contained meso-diaminopimelic acid as the diagnostic cell wall diamino acid. The main detected polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, an unidentified phospholipid and an unidentified polar lipid. The predominant respiratory quinone was identified as menaquinone-7 (MK-7). The major cellular fatty acid (>10%) was anteiso-C15:0. The G + C content of the genomic DNA was determined to be 38.4% based on the draft genome sequence. Based on the comparative analysis of polyphasic taxonomic data, strain APA_H-1(4)T represents a novel species of the genus Oceanobacillus, for which the name Oceanobacillus saliphilus sp. nov. is proposed. The type strain is APA_H-1(4)T (=GDMCC 1.2239T = KCTC 43254T).


Assuntos
Bacillaceae , Solo , Álcalis , Técnicas de Tipagem Bacteriana , China , DNA Bacteriano/química , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
5.
Nutrients ; 14(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35684000

RESUMO

BACKGROUND: The gut microbial ecosystem is an important factor that regulates host health and the onset of chronic diseases, such as inflammatory bowel diseases, obesity, hyperlipidemia, and diabetes mellitus, which are important risk factors for atherosclerosis. However, the links among diet, microbiota composition, and atherosclerotic progression are unclear. METHODS AND RESULTS: Four-week-old mice (-/- mice, C57Bl/6) were randomly divided into two groups, namely, supplementation with culture medium (control, CTR) and Bacteroides fragilis (BFS), and were fed a high-fat diet. The gut microbiota abundance in feces was evaluated using the 16S rDNA cloning library construction, sequencing, and bioinformatics analysis. The atherosclerotic lesion was estimated using Oil Red O staining. Levels of CD36, a scavenger receptor implicated in atherosclerosis, and F4/80, a macrophage marker in small intestine, were quantified by quantitative real-time PCR. Compared with the CTR group, the BFS group showed increased food intake, fasting blood glucose level, body weight, low-density lipoprotein level, and aortic atherosclerotic lesions. BFS dramatically reduced Lactobacillaceae (LAC) abundance and increased Desulfovibrionaceae (DSV) abundance. The mRNA expression levels of CD36 and F4/80 in small intestine and aorta tissue in the BFS group were significantly higher than those in the CTR group. CONCLUSIONS: gut microbiota dysbiosis was induced by BFS. It was characterized by reduced LAC and increased DSV abundance and led to the deterioration of glucose/lipid metabolic dysfunction and inflammatory response, which likely promoted aorta plaque formation and the progression of atherosclerosis.


Assuntos
Doenças da Aorta , Aterosclerose , Microbioma Gastrointestinal , Animais , Aorta/metabolismo , Doenças da Aorta/genética , Aterosclerose/metabolismo , Bacteroides fragilis , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Modelos Animais de Doenças , Disbiose/metabolismo , Ecossistema , Microbioma Gastrointestinal/genética , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
6.
Chemosphere ; 228: 721-734, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31071559

RESUMO

Nitrate (NO3-) pollution is a serious problem worldwide. Identification of NO3- sources and transformation processes in aquifers is a key step in effectively controlling and mitigating NO3- contamination. In this study, hydrochemical, microbial, and dual isotopic approaches were integrated to elucidate the sources and processes influencing NO3- contamination in the Pearl River Delta, China. The results showed a severe NO3- contamination, with 75% of the samples having NO3--N concentrations above the WHO standard of 10 mg L-1. The δ15NNO3- and δ18ONO3- values and a multivariate statistical analysis of hydrochemical data both revealed that manure and sewage were mainly responsible for NO3- contamination. Biological indicators further demonstrated that, manure and sewage had greater impacts on groundwater quality during the rainy season than during the dry season. Based on the significant relationships of δ15NNO3- and δ18ONO3- with the logarithmic NO3- concentration (Ln(NO3-)), denitrification was confirmed to occur in the discharge zone during the rainy season. Proteobacteria, Bacteroidetes, and Planctomycetes were identified as the dominant phyla, and Dechloromonas, Flavobacterium, and Nitrospira were dominant among the denitrifying bacteria in groundwater. The abundance of denitrifying bacteria had significant positive correlations with δ15NNO3- and NO2--N during the rainy season, further confirming the occurrence of denitrification during the rainy season. This study showed that dual isotope techniques combined with microbial data can be a powerful tool for identifying the sources and microbial processes affecting NO3- in groundwater. Moreover, the results can provide useful insights for environmental managers to verify groundwater pollution and better apply remediation solutions.


Assuntos
Água Subterrânea/química , Água Subterrânea/microbiologia , Nitratos/análise , Poluentes Químicos da Água/química , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , China , Desnitrificação , Monitoramento Ambiental/métodos , Água Subterrânea/análise , Esterco , Nitratos/química , Nitratos/metabolismo , Isótopos de Nitrogênio/análise , Chuva , Estações do Ano , Esgotos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Qualidade da Água
7.
Microbiome ; 7(1): 74, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092296

RESUMO

BACKGROUND: Plant microbiome highlights the importance of endosphere microbiome for growth and health of the host plant. Microbial community analysis represents an elegant way to identify keystone microbial species that have a more central position in the community. The aim of this study was to access the interactions between the keystone bacterial species and plants during banana Fusarium wilt process, by comparing the endophytic bacterial and fungal community in banana roots and shoot tips during growth and wilting processes. The keystone bacterial species were isolated and further engineered to improve banana wilt resistance. RESULTS: Banana endosphere microbiome structure varied during plant growth and wilting processes. Bacterial and fungal diversity in the shoot tips and roots increased with the development of the banana plantlets. The bacterial groups belonging to the Enterobacteriaceae family with different relative abundances were detected in all the samples. The Klebsiella spp. might be the keystone bacteria during the growth of banana plantlets. The relative abundance of Fusarium associated with the wilt disease did not increase during the wilting process. The endophytic Enterobacteriaceae strains Enterobacter sp. E5, Kosakonia sp. S1, and Klebsiella sp. Kb were isolated on Enterobacteriaceae selective medium and further engineered by expressing 1-aminocyclopropane-1-carboxylate (ACC) deaminase on the bacterial cell walls (designated as E5P, S1P, and KbP, respectively). Pot experiments suggested that plants inoculated with strains E5, E5P, S1, and S1P increased resistance to the Fusarium wilt disease compared with the controls without inoculation, whereas the Klebsiella inoculation (Kb and KbP) did not increase the wilt resistance. Compared with the inoculation with the wild strains E5 and S1, the inoculation with engineered strains E5P and S1P significantly increased wilt resistance and promoted plant growth, respectively. The results illustrated that the keystone species in the banana microbiome may not be dominant in numbers and the functional role of keystone species should be involved in the wilt resistance. CONCLUSION: The ACC deaminase activity of engineered bacteria was essential to the Fusarium wilt resistance and growth promotion of banana plants. Engineering keystone bacteria in plant microbiome with ACC deaminase on the cell walls should be a promising method to improve plant growth and disease resistance.


Assuntos
Bactérias/genética , Resistência à Doença , Microbiota , Musa/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Carbono-Carbono Liases/genética , Fusarium/patogenicidade , Microrganismos Geneticamente Modificados , Musa/crescimento & desenvolvimento , Raízes de Plantas/microbiologia
8.
3 Biotech ; 9(6): 216, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31114740

RESUMO

The yeasts transmitted from seeds to sprouts might be used as probiotics for host plants. To investigate the inheritable yeasts of rice plants for probiotics, the fungal internal transcribed spacer (ITS) regions (ITS1 and ITS2) in rice sprouts were analyzed by Illumina-based sequencing. The fungal genera Candida, Mortierella, Alternaria, Penicillium, and Tomentella were revealed by both ITS1 and ITS2 sequence analysis. The endophytic yeasts were isolated from rice sprouts by yeast selective medium. Compared with the negative controls, inoculation of isolate Y3 released 2.2 folds higher concentration of free phosphate in soybean meal broth. Most of the phytase activities were located in the yeast cell interiors. The shoot lengths, shoot fresh weights, and root fresh weights of inoculated seedlings increased by 35%, 80%, and 60% compared with the control seedlings, respectively. The results suggested that the rice sprouts contained diverse phytase-producing yeasts transmitted from seeds. These yeasts might be adopted as prospective probiotics to improve rice growth by increasing phosphate utilization efficacy.

9.
Probiotics Antimicrob Proteins ; 10(2): 284-292, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28560514

RESUMO

As potential probiotic candidates, plant vertically transmitted actinobacteria are beneficial to growth and health of host plants. New methods to isolate the actinobacterial taxa with low growth rates should be developed. Based on the actinobacterial population information, the probiotic actinobacterial taxa could be directly isolated from healthy banana shoot tips. However, actinobacterial DNAs with high GC contents could bias estimates of actinobacteria by PCR. In the study, two amplicon sequencing strategies were adopted to elucidate the endophytic actinobacterial community of banana plants. More than 92.5% bacterial OTUs were affiliated with actinobacteria by these two strategies, and total 14,289 actinobacterial OTUs with above 97% similarity were detected in banana shoot tips. Although the libraries generated by the two strategies differed in the abundance of some genera, Mycobacterium and Nocardia dominated both libraries and most actinobacterial taxa were overlapped. Higher phylogenetic resolution actinobacteriome of banana plants was successfully established. Based on the endophytic actinobacterial community information, the streptomycetes were isolated from shoot tips. Pot experiments illustrated that the strain could promote banana plantlet growth and elevate resistance to Fusarium oxysporum f. sp. cubense (FOC) under FOC infested soils. The results suggested that the selection for probiotic agents based on actinobacteriome analysis is reliable and feasible compared with present greenhouse selection.


Assuntos
Actinobacteria/genética , Actinobacteria/isolamento & purificação , Endófitos/isolamento & purificação , Musa/microbiologia , Probióticos/isolamento & purificação , Actinobacteria/classificação , Endófitos/classificação , Endófitos/genética , Fusarium/fisiologia , Musa/crescimento & desenvolvimento , Musa/imunologia , Filogenia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Brotos de Planta/microbiologia , Probióticos/química , Probióticos/classificação , Análise de Sequência de DNA
10.
Probiotics Antimicrob Proteins ; 10(3): 478-484, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28643225

RESUMO

Selection for probiotic candidates by in vivo experimental trials is time and labor consuming; more informed strategy is needed to select successful probiotic candidates. The aim of the study was to elucidate the microbial taxa transmitted from maize seeds to seedlings during the germination process of maize and their probiotic effects. The bacterial and fungal taxa in kernel germs and sprouts were analyzed by Illumina-based sequencing. The sprouts contained more diverse fungi than those in germs. The bacterial species (OTUs) declined with the germination from germs to the sprouts. However, the endophytic fungal diversity increased during the germination process. Seed-borne dominant bacterial genera Bacillus, Halomonas, and Shewanella and dominant fungal genera Aspergillus were also detected in sprouts. The spore-forming bacteria BS3 isolated directly from sprouts could promote growth of maize seedling and resistance to F. verticillioides under F. verticillioides-infested soils. The results suggested that maize contained core bacterial and fungal taxa during the development from seeds to sprouts, and the core endophytes showed more intimate correlation with host plants than did other microbial taxa. Illumina-based sequence analysis is feasible to guide probiotic candidate selection and isolation.


Assuntos
Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Probióticos/isolamento & purificação , Zea mays/microbiologia , Bactérias/classificação , Bactérias/genética , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Fungos/classificação , Fungos/genética , Germinação , Filogenia , Probióticos/classificação , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Sementes/crescimento & desenvolvimento , Sementes/microbiologia , Zea mays/crescimento & desenvolvimento
11.
Probiotics Antimicrob Proteins ; 10(2): 293-298, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28741152

RESUMO

There is increasing interest in the use of plant probiotics as environmental-friendly and healthy biofertilizers. The study aimed at selecting for novel probiotic candidates of soybean (Glycine max). The bacteriome and mycobiome of soybean sprouts and seeds were analyzed by Illumina-based sequencing. Seeds contained more diverse bacteria than those in sprouts. The seeds contained similar fungal diversity with sprouts. Total 15 bacterial OTUs and 4 fungal OTUs were detected in seeds and sprouts simultaneously, suggesting that the sprouts contained bacterial and fungal taxa transmitted from seeds. The Halothiobacillus was the most dominant bacterial genus observed and coexisted in seeds and sprouts. The OTUs belonged to Ascomycota were the most dominant fungal taxa observed in seeds and sprouts. Halothiobacillus was firstly identified as endophytic probiotics of soybean. The results suggested that sprouts might contain diverse plant probiotics of mature plants and Illumina-based sequencing can be used to screen for probiotic candidates.


Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Glycine max/microbiologia , Análise de Sequência de DNA/métodos , Bactérias/classificação , Bactérias/genética , Filogenia , Probióticos , Sementes/crescimento & desenvolvimento , Sementes/microbiologia , Glycine max/crescimento & desenvolvimento
12.
Probiotics Antimicrob Proteins ; 10(4): 748-754, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29039076

RESUMO

Bacterial species of Bacillus, Lactobacillus, and Bifidobacterium in the intestinal tract have been used as probiotics. Selections for probiotic candidates by the culture-based approaches are time-consuming and labor-consuming. The aim of this study was to develop a new method based on sequencing strategies to select the probiotic Bacillus, Lactobacillus, and Bifidobacterium. The Illumina-based sequencing strategies with different specific primers for Bacillus, Clostridium, and Bifidobacterium were applied to analyze diversity of the genera in goat feces. The average number of different Bacillus, Clostridium, and Bifidobacterium OTUs (operational taxonomic units) at the 97% similarity level ranged from 1922 to 63172. The coverage index values of Bacillus, Clostridium, and Bifidobacterium calculated from the bacterial OTUs were 0.89, 0.99, and 1.00, respectively. The most genera of Bacillus (37.9%), Clostridium (53%), and Bifidobacterium (99%) were detected in goat feces by the Illumina-based sequencing with the specific primers of the genera, respectively. Higher phylogenetic resolutions of the genera in goat feces were successfully established. The results suggest that the selection for probiotic Bacillus, Clostridium, and Bifidobacterium based on the Illumina sequencing with their specific primers is reliable and feasible, and the core Bacillus, Clostridium, and Bifidobacterium species of healthy goats possess the potentials as probiotic microbial consortia.


Assuntos
Bacillus/isolamento & purificação , Bifidobacterium/isolamento & purificação , Clostridium/isolamento & purificação , Cabras/microbiologia , Probióticos/isolamento & purificação , Animais , Bacillus/classificação , Bacillus/genética , Bifidobacterium/classificação , Bifidobacterium/genética , Biodiversidade , Clostridium/classificação , Clostridium/genética , Primers do DNA/genética , Fezes/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Probióticos/classificação
13.
Microb Cell Fact ; 16(1): 214, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29183329

RESUMO

BACKGROUND: Most endophytic bacteria in consortia, which provide robust and broad metabolic capacity, are attractive for applications in plant metabolic engineering. The aim of this study was to investigate the effects of engineered endophytic bacterial strains on rice sprout ethylene level and growth under saline stress. A protocol was developed to synthesize engineered strains by expressing bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene on cells of endophytic Enterobacter sp. E5 and Kosakonia sp. S1 (denoted as E5P and S1P, respectively). RESULTS: Results showed that ACC deaminase activities of the engineered strains E5P and S1P were significantly higher than those of the wild strains E5 and S1. About 32-41% deaminase was expressed on the surface of the engineered strains. Compared with the controls without inoculation, inoculation with the wild and engineered strains increased the deaminase activities of sprouts. Inoculation with the engineered strains increased 15-21% more deaminase activities of sprouts than with the wild strains, and reduced the ethylene concentrations of sprouts more significantly than with wild strains (P < 0.05). Inoculation with the wild and engineered strains promoted the growth of sprouts, while the promoting effects were more profound with the engineered strains than with the wild strains. The engineered strains improved saline resistance of sprouts under salt concentrations from 10 to 25 g L-1. The engineered strains promoted longer roots and shoots than the wild strains under the salt stresses, indicating that the ACC deaminases on the endophytic bacterial cells could result in plant-produced ACC degradation and inhibit plant ethylene formation. CONCLUSIONS: The protocols of expressing enzymes on endophytic bacterial cells showed greater potentials than those of plant over-expressed enzymes to increase the efficiency of plant metabolic pathways.


Assuntos
Carbono-Carbono Liases/genética , Técnicas de Visualização da Superfície Celular/métodos , Enterobacteriaceae/metabolismo , Etilenos/biossíntese , Oryza/metabolismo , Cloreto de Sódio/metabolismo , Endófitos/metabolismo , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/enzimologia , Enterobacteriaceae/genética , Etilenos/análise , Etilenos/metabolismo , Engenharia Metabólica/métodos , Oryza/microbiologia , Raízes de Plantas/microbiologia , Cloreto de Sódio/farmacologia , Estresse Fisiológico
14.
3 Biotech ; 7(6): 366, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29051847

RESUMO

The present study reports the diversity of culturable bacteria associated with the puffer fish Gastrophysus spadiceus. During the study, a total of 31 strains affiliated to the genera Pseudomonas, Janthinobacterium, Rahnella, and Psychrobacter were isolated from liver, intestines, and flesh of G. spadiceus. These strains exhibited a diverse range of metabolites as indicated by the HPLC and TLC profiles of the chemical extracts of their fermentation products. Some of these crude extracts showed strong antimicrobial activities against pathogenic bacterial strains. In addition, few crude extracts exhibit insecticidal activity against Artemia salina.

15.
Environ Sci Pollut Res Int ; 24(19): 16458-16464, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28551744

RESUMO

Seed-borne endophytes could be transmitted into sprouts. Whether this happened in peanuts and the difference between microbial taxa in peanut germs and cotyledons remain unknown. In this research, Illumina-based sequencing was employed to investigate the microbial taxa in peanut germs, cotyledons, and sprouts. Sulfur-oxidizing bacteria was isolated and inoculated into peanut sprouts, and then, the growth of peanut seedlings was measured. The results illustrated that diverse bacteria and fungi were detected in peanut germs, cotyledons, and sprouts. The number of bacterial OTUs declined with the germination from germs and cotyledons to sprouts. However, the number of fungal OTUs increased during the seedling procedure. Seed-borne dominant bacterial genera Halothiobacillus and Synechococcus and fungal genera Humicola, Emericella, and Penicillium were detected in sprouts. Based on the endophytic community information, the Halothiobacillus strains were isolated from sprouts. Pot experiments that illustrated the growth of peanut seedlings inoculated with the strain were promoted. These results provide new understanding into plant-microbe interactions in peanut and suggest that the selection for biocontrol agents based on mycobiome and bacteriome analysis is reliable and feasible compared with the present greenhouse selection.


Assuntos
Arachis , Cotilédone , Endófitos , Germinação , Plântula
16.
Environ Sci Pollut Res Int ; 24(16): 14477-14483, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28444566

RESUMO

The aim of the present study is to investigate the effect of seed inoculation with endophytic denitrifiers on rice seedling growth and nitrogen use efficiency under low- and high-urea conditions. Pseudomonas sp. B2, Streptomyces sp. A9, and Fusarium sp. F3 were isolated from rice plant tissues. Rice seeds inoculated with the denitrifiers were sown in soil fertilized with 100 and 300 mg/kg urea concentrations, respectively. The denitrifiers increased soil ammonia concentrations or kept high ammonia concentration for a longer time in soils. However, soil nitrate concentrations with the denitrifier treatments were lower than that of the control. All the denitrifier treatments increased the chlorophyll content by more than 200% under the low urea condition. Compared to the control, the denitrifier inoculation treatments significantly increased shoot length, fresh weight, and dry weight of rice seedlings under the low- and high-urea conditions (P < 0.05). The chlorophyll concentrations, shoot length, wet weight, and dry weight of all the denitrifier treatments under the low urea fertilization were significantly higher than those of the control under the high-urea fertilization (P < 0.05). The nitrogen use efficiency of rice seedlings might be attributable to nitrate reductases of the denitrifiers, acting as the rice nitrate reductase. The treatment of endophytic denitrifiers significantly improved rice seedling growth and nitrogen use efficiency under both low- and high-urea conditions.


Assuntos
Desnitrificação , Oryza/metabolismo , Solo/química , Fertilizantes , Nitrogênio/metabolismo , Oryza/crescimento & desenvolvimento , Plântula , Sementes
17.
Chemosphere ; 168: 1100-1106, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28029384

RESUMO

Endophytic microorganisms (including bacteria and fungi) are likely to interact closely with their hosts and are more protected from adverse changes in the environment. The microbiota contribute to plant growth, productivity, carbon sequestration, and phytoremediation. Elevated levels of contaminants (i.e. metals) are toxic to most plants, the plant's metabolism and growth were impaired and their potential for metal phytoextraction is highly restricted. Exploiting endophytic microorganisms to reduce metal toxicity to plants have been investigated to improve phytoremediation efficiencies. Fungi play an important role in organic and inorganic transformation, element cycling, rock and mineral transformations, bioweathering, mycogenic mineral formation, fungal-clay interactions, and metal-fungal interactions. Endophytic fungi also showed potentials to enhance phytoremediation. Compared to bacteria, most fungi exhibit a filamentous growth habit, which provides the ability to adopt both explorative or exploitative growth strategies and form linear organs of aggregated hyphae to protect fungal translocation. However, the information regarding the role of endophytic fungi in phytoremediation are incomplete, this review highlights the taxa, physiological properties, and interaction of endophytic fungi with plants in phytoremediation.


Assuntos
Biodegradação Ambiental , Endófitos/fisiologia , Fungos/fisiologia , Metais Pesados/metabolismo , Plantas/metabolismo , Plantas/microbiologia , Poluentes do Solo/metabolismo
18.
Environ Sci Pollut Res Int ; 24(1): 417-426, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27726080

RESUMO

Metal-resistant endophytic fungi from roots improved phytoremediation efficacy of host plants; however, the effects of endophytic fungi from plant aerial parts on host plants are unknown. The aim of this study was to develop a feasible method to screen fungal endophytes from stems and roots of Brassica napus and to investigate effects of the endophytic fungi on growth and phytoremediation efficiency of the plant. Endophytic Fusarium sp. CBRF44, Penicillium sp. CBRF65, and Alternaria sp. CBSF68 with different traits were isolated from roots and stems of rapes grown in a metal-contaminated soil. Fusarium sp. CBRF44 (resistant to 5 mM Cd and 15 mM Pb, isolated from roots) and Alternaria sp. CBSF68 (resistant to 1 mM Cd and 10 mM Pb, isolated from stems) could produce indole-3-acetic acid (IAA) and siderophore; Penicillium sp. CBRF65 (tolerate 2 mM Cd and 20 mM Pb, isolated from roots) could not produce IAA and siderophore but showed the highest phosphate-solubilizing activities. Fusarium sp. CBRF44 and Penicillium sp. CBRF65 significantly increased the rape biomass and promoted the extraction efficacy of Pb and Cd, while Alternaria sp. CBSF68 did not show similar results. Penicillium sp. CBRF65 and Fusarium sp. CBRF44 could be frequently recovered from inoculated rape roots, while Alternaria sp. CBSF68 was scarcely recovered. The results indicate that the colonizing capacity of endophytic fungi in roots is important to improve phytoremediation efficacy of host plants.


Assuntos
Alternaria , Brassica napus , Cádmio , Fusarium , Chumbo , Penicillium , Poluentes do Solo , Alternaria/efeitos dos fármacos , Alternaria/metabolismo , Biodegradação Ambiental , Biomassa , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Brassica napus/microbiologia , Cádmio/metabolismo , Cádmio/toxicidade , Fusarium/efeitos dos fármacos , Fusarium/metabolismo , Ácidos Indolacéticos/metabolismo , Chumbo/metabolismo , Chumbo/toxicidade , Penicillium/efeitos dos fármacos , Penicillium/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Caules de Planta/microbiologia , Microbiologia do Solo , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade
19.
Appl Microbiol Biotechnol ; 100(22): 9699-9707, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27562469

RESUMO

The aim of this study was to investigate the effects of single and mixed culture of denitrifying fungi, bacteria, and actinobacteria on nitrogen removal and N2O emission in treatment of wastewater. Denitrifying endophytes of Pseudomonas sp. B2, Streptomyces sp. A9, and Fusarium sp. F3 isolated from rice plants were utilized for treatment of synthetic wastewater containing nitrate and nitrite. Experiments were conducted under shaking and static conditions. Results showed that under the static condition, more than 97 % of nitrate removal efficiencies were reached in all the treatments containing B2. The nitrate removal rates within the first 12 h in the treatments of B2, B2+A9, B2+F3, and B2+A9+F3 were 7.3, 9.8, 11, and 11 mg L-1 h-1, respectively. Under the shaking condition, 100 % of nitrite was removed in all the treatments containing B2. The presence of A9 and F3 with B2 increased the nitrite removal rates under both the shaking and static conditions. Compared to the B2 system, the mixed systems of B2+A9, B2+F3, and B2+A9+F3 reduced N2O emission (78.4 vs. 19.4, 1.80, and 0.03 µM in 4 weeks, respectively). Our results suggested that B2 is an important strain that enhances nitrogen removal from wastewater. Mixed cultures of B2 with A9 and F3 can remove more nitrate and nitrite from wastewater and reduce nitrite accumulation and N2O emission in the denitrification process.


Assuntos
Bactérias/metabolismo , Desnitrificação , Fungos/metabolismo , Nitrogênio/metabolismo , Águas Residuárias/química , Águas Residuárias/microbiologia , Consórcios Microbianos , Compostos de Nitrogênio/metabolismo
20.
Microbiol Res ; 190: 12-8, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27393994

RESUMO

Seed-borne microbiota can transmit vertically from generation to generation and be a favour mutualism between the endosymbionts and hosts. The aim of this study was to investigate the rice-associated actinobacterial taxa in roots, stems, and grains and explore vertically transmitted core actinobacteriome of rice plants. Illumina sequencing analyses of samples of rice grains, stems, and roots showed that the roots contained the most diverse actinobacteria among the tissues. The grains contained 78 actinobacterial operational taxonomic units (OTUs), among which 44 were shared with those in the stems, 30 shared with those in the roots. The coexisted OTUs in the three types of samples mainly belong to genera of Pseudonocardia, Dietzia, Nocardioides, Streptomyces, Mycobacterium, Corynebacterium, Citricoccus, Salinibacterium, and Agrococcus, and other unclassified taxa. The dominant actinobacterial genera Pseudonocardia and Dietzia in the stems and roots were still detected in relatively high abundance in the grains. The Streptomyces isolated from surface sterilized grains could improve nitrogen use efficiency of rice seedlings and the resistance to rice blast fungus. The results suggested that the rice grains contained diverse actinobacterial taxa deriving from stems and roots and showed intimate correlation with the host plants.


Assuntos
Actinobacteria/classificação , Actinobacteria/genética , Biodiversidade , Oryza/microbiologia , Endófitos/classificação , Endófitos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Raízes de Plantas/microbiologia , Caules de Planta/microbiologia , Sementes/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...