Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1259353, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841239

RESUMO

Introduction: Kawasaki disease (KD) is an acute febrile illness primarily affecting children and characterized by systemic inflammation and vasculitis that can lead to coronary artery complications. The aim of this study was to gain a comprehensive understanding of immune dysregulation in KD. Methods: To this end, we employed integration of single-cell RNA sequencing (scRNA-Seq) and bulk RNA sequencing (bulk RNA-Seq) data. Furthermore, we conducted flow cytometry analysis for a cohort of 82 KD patients. Results: Our analysis revealed significant heterogeneity within immune cell populations in KD patients, with distinct clusters of T cells, B cells, and natural killer (NK) cells. Importantly, CD4+ naïve T cells in KD patients were found to predominantly differentiate into Treg cells and Th2 cells, potentially playing a role in the excessive inflammation and vascular damage characteristic of the disease. Dysregulated signaling pathways were also identified, including the mTOR signaling pathway, cardiomyopathy pathway, COVID-19 signaling pathway, and pathways involved in bacterial or viral infection. Discussion: These findings provide insights into the immunopathogenesis of KD, emphasizing the importance of immune cell dysregulation and dysregulated signaling pathways. Integration of scRNA-Seq and bulk RNA-Seq data offers a comprehensive view of the molecular and cellular alterations in KD and highlights potential therapeutic targets for further investigation. Validation and functional studies are warranted to elucidate the roles of the identified immune cell types and pathways in KD pathogenesis and to develop targeted interventions to improve patient outcomes.


Assuntos
COVID-19 , Síndrome de Linfonodos Mucocutâneos , Criança , Humanos , Síndrome de Linfonodos Mucocutâneos/genética , RNA-Seq , Análise da Expressão Gênica de Célula Única , Inflamação , Vasos Coronários
2.
Animals (Basel) ; 11(9)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34573667

RESUMO

Selenium Auricularia cornea culture (SAC) is a new source of organic selenium. Two experiments were conducted to determine the available energy of SAC fed to pigs and to evaluate the effects of dietary SAC supplementation on growth performance, serum biochemical profiles, fecal short chain fatty acids (SCFA), meat quality, tissue selenium concentration, and oxidative stability of fresh meat in growing-finishing pigs. In Experiment (Exp.) 1, 12 barrows with average body weight (BW) of 42.40 ± 5.30 kg were randomly allotted to two groups and fed the basal diet and SAC-supplemented diet, individually. In Exp. 2, 96 growing-finishing pigs (BW: 91.96 ± 7.55 kg) were grouped into four dietary treatments; each treatment contained six replicates with four pigs per replicate. The four treatments fed a control diet and three experimental diets supplemented with 0.6%, 1.2%, and 2.4% SAC, respectively. The trial lasted for 45 days. The results revealed that digestible energy (DE) of SAC was 11.21 MJ/kg. The average daily gain (ADG) was improved in pigs fed 1.2% and 2.4% SAC during day 24 to 45 and the overall period. Dietary 1.2% and 2.4% SAC supplementation had a lower F/G (p < 0.05) than the control diet during different stages. Dietary SAC supplementation increased fecal butyrate contents (p < 0.05), and pigs fed 1.2% and 2.4% SAC diets had a higher MCT1 mRNA expression (p = 0.04) in the colon. Pigs fed 2.4% SAC had higher GSH-Px contents (p < 0.05) in serum, liver, and longissimus dorsi muscle (LDM) than those in the control group. The 2.4% SAC-supplemented group revealed a higher Se content (p < 0.05) in LDM and a lower MDA concentration (p < 0.05) in fresh meat during the simulated retail display on day six. In conclusion, this study suggested that SAC was more effective in improving growth, enhancing the antioxidant status, depositing Se in muscle, and increasing meat oxidative stability of pigs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...