Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Nephrol ; 25(1): 157, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714960

RESUMO

BACKGROUND: This study aims to investigate the influencing factors of vascular calcification in peritoneal dialysis (PD) patients and its relationship with long-term prognosis. METHODS: This retrospective cohort study included chronic kidney disease patients undergoing peritoneal dialysis at the Peritoneal Dialysis Center of Beijing Luhu Hospital, Capital Medical University, from January 2019 to March 2019. Demographic and clinical laboratory data, including serum sclerostin (SOST), calcium (Ca), phosphate (P), serum albumin (ALB), and intact parathyroid hormone (iPTH) levels, were collected. Abdominal aortic calcification (AAC) was assessed using abdominal lateral X-ray examination to determine the occurrence of vascular calcification, and patients were divided into the AAC group and Non-AAC group based on the results. RESULTS: A total of 91 patients were included in the study. The AAC group consisted of 46 patients, while the Non-AAC group consisted of 45 patients. The AAC group had significantly older patients compared to the non-AAC group (P < 0.001) and longer dialysis time (P = 0.004). Multivariable logistic regression analysis indicated that risk factors for vascular calcification in PD patients included dialysis time, diabetes, hypertension, and SOST. Kaplan-Meier survival analysis showed that the AAC group had a significantly higher mortality rate than the non-AAC group (χ2 = 35.993, P < 0.001). Multivariable Cox regression analysis revealed that dialysis time, diabetes and AAC were risk factors for all-cause mortality in peritoneal dialysis patients. CONCLUSION: Longer dialysis time, comorbid diabetes, comorbid hypertension, and SOST are risk factors for vascular calcification in PD patients. Additionally, AAC, longer dialysis time, and comorbid diabetes are associated with increased risk of all-cause mortality in peritoneal dialysis patients.


Assuntos
Diálise Peritoneal , Calcificação Vascular , Humanos , Diálise Peritoneal/efeitos adversos , Masculino , Feminino , Calcificação Vascular/epidemiologia , Calcificação Vascular/diagnóstico por imagem , Calcificação Vascular/etiologia , Pessoa de Meia-Idade , Estudos Retrospectivos , Prognóstico , Fatores de Risco , Idoso , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/complicações , Estudos de Coortes , Hormônio Paratireóideo/sangue , Adulto , Aorta Abdominal/diagnóstico por imagem , Albumina Sérica/metabolismo , Albumina Sérica/análise , Cálcio/sangue
2.
Anal Chim Acta ; 1279: 341852, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37827658

RESUMO

As is common knowledge, a strong electrochemiluminescence (ECL) signal is required to ensure the high sensitivity of trace target detection. Here, a dual signal amplification strategy by integrating of perovskite and photonic crystal was fabricated for quantitative synthetic cannabinoids (AB-PINACA) detection based on Zr-connected PTCA and TCPP (PTCA-TCPP) with excellent ECL performance as luminophores. On the one hand, the co-reaction accelerator perovskite (LaCoO3) improved the effective electroactive area of the electrode and promoted the decomposition of K2S2O8, resulting in a stronger ECL signal value. On the other hand, polystyrene inverse opal (PIOPCs) formed after the swelling of PS microspheres not only taken advantage of the light scattering effect and excellent catalytic property of photonic crystals to amplify the ECL signal, but also could be used as a binder to fix LaCoO3 and PTCA-TCPP on the electrode surface to generate unprecedented ECL response and stable ECL signals. Subsequently, the detection substance AB-PINACA was loaded on the electrode surface via the amide bond with the luminophores PTCA-TCPP, thus quenching the ECL signal, so as to realize the sensitive detection of synthetic cannabinoids. Under the optimal conditions, the proposed sensor achieved highly sensitive AB-PINACA detection with a dynamic range from 1.0 × 10-12 to 1.0 × 10-3 g/L and the detection limit was 1.1 × 10-13 g/L, which had great application potential in the detection of synthetic cannabinoids.

3.
Analyst ; 148(18): 4470-4478, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37574902

RESUMO

In this work, a super-sensitive electrochemiluminescence (ECL) aptamer sensor was constructed using a multiple signal amplification strategy to realize ultra-sensitive detection of di-(2-ethylhexyl) phthalate (DEHP). The incorporation of a highly efficient electrocatalytic metal-organic framework (NH2-Zr-MOF) and graphdiyne (GDY) composite has significantly enhanced the overall electrochemically active surface area, facilitating electron transfer during the entire electrochemical reaction process, and the large number of pores in graphdiyne and NH2-Zr-MOF limited a series of redox reactions within a certain range. This resulted in the generation of a greater number of SO4˙- radicals, thereby boosting the ECL intensity of the GDY in the K2S2O8 system. To increase the performance of the sensor even further, sodium ascorbate (NaAsc) as an accelerator was added to the co-reactant system. Additionally, nitrogen micro-nano bubbles with higher stability and stronger mass transfer have been introduced into the ECL system for the first time. Based on these, the aptamer as the recognition element realized the ultra-sensitive detection of DEHP in the linear range of 1.0 × 10-12 to 1.0 × 10-4 mg mL-1 with the limit of detection (LOD) of 2.43 × 10-13 mg mL-1. In summary, we have utilized the electrocatalytic activity of the porous MOF and the reducing capability of sodium ascorbate to enhance the ECL emission of GDY, which has been successfully applied to the detection of DEHP in water samples.

4.
Biosens Bioelectron ; 237: 115541, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37515948

RESUMO

Recently, up-conversion luminescent (UCL) materials have caught extensive sight on account of their excellent biocompatibility and weak automatic fluorescence background, but the low optical signal makes researchers shy away. Organic dye-sensitized UCL materials can improve the low optical signal drawback of UCL and rejuvenate it with adjustable optical properties and unique antenna effects. In this work, an efficient, simple and selective electrochemiluminescence (ECL) sensing platform was developed for determination of enrofloxacin (ENR). 3,4,9,10-perylene tetracarboxylic acid (PTCA) was successfully used as an "antenna" to improve the ECL performance of the UCL nanoparticles (PEI-NaYF4: Yb, Er) due to its appropriate excitation spectrum position and superior electron transfer rate. The specific recognition function of the aptamer enabled the sensor to eliminate the interference from conspecific impurity. In the presence of ENR, the specific combination of ENR with aptamer made the aptamer fall from surface of the electrode, thus we could see a considerable enhancement of signal. Under the most favourable conditions, the aptasensor based on antenna effect displayed a wide detection range (1.0 × 10-14∼1.0 × 10-6 M), low limit of detection (LOD = 3.0 × 10-15 M) and receivable recoveries (96.0%-102.4%) during water samples analysis. At this point, antenna effect provides a powerful strategy to expand the application of UCL in the field of ECL biosensing.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Perileno , Enrofloxacina , Medições Luminescentes , Técnicas Eletroquímicas , Limite de Detecção
5.
J Investig Med ; 71(8): 845-853, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37485956

RESUMO

This study investigated the risk factors of abdominal aortic calcification (AAC) in patients with stage 5 chronic kidney disease (CKD) and the effects of AAC and different dialysis methods on the 3-year survival rate of patients with stage 5 CKD. A retrospective cohort study was conducted on stage 5 CKD patients who received dialysis treatment. The general data were collected, and all fasting venous blood samples were harvested before the first dialysis to detect biochemical markers. The AAC was evaluated by lateral abdominal X-ray. The patients were followed up with a cut-off date of March 31, 2022, with all-cause mortality as the endpoint event. A total of 205 patients were included. multivariable Cox regression analysis confirmed that AAC (hazard ratio (HR) = 2.173, 95% CI 1.029-4.588, p = 0.042), advanced age (HR = 1.061, 95% CI 1.031-1.093, p < 0.001), duration of dialysis (HR = 1.015, 95% CI 1.007-1.032, p < 0.001), diabetes (HR = 3.966, 95% CI 2.164-7.269, p < 0.001), and hypertension (HR = 1.897, 95% CI 1.089-3.303, p = 0.024) were independent risk factors for 3-year mortality. However, peritoneal dialysis (HR = 0.366, 95% CI 0.165-0.812, p = 0.013), high albumin (HR = 0.882, 95% CI 0.819-0.950, p = 0.001), and high hemoglobin (HR = 0.969, 95% CI 0.942-0.997, p = 0.031) were protective factors for 3-year mortality in stage 5 CKD patients. Increased age, long-term dialysis, high level of intact parathyroid hormone, diabetes, and hypertension are closely related to the occurrence of AAC in patients with stage 5 CKD. In addition, AAC is an independent risk factor for all-cause mortality in patients with stage 5 CKD.


Assuntos
Doenças da Aorta , Diabetes Mellitus , Hipertensão , Falência Renal Crônica , Calcificação Vascular , Humanos , Diálise Renal/efeitos adversos , Diálise Renal/métodos , Calcificação Vascular/complicações , Calcificação Vascular/diagnóstico , Estudos Retrospectivos , Falência Renal Crônica/complicações , Fatores de Risco , Hipertensão/complicações , Doenças da Aorta/epidemiologia , Doenças da Aorta/etiologia
6.
ACS Sens ; 8(7): 2656-2663, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37363936

RESUMO

Currently, studies on electrochemiluminescence (ECL) mainly focused on the single emission of luminophores while those on multi-color ECL were rarely reported. Here, a bi-mesoporous composite of the metal-organic framework (MOF)/covalent-organic framework (COF) with strong and stable dual-color ECL was prepared to construct a novel ECL sensor for sensitive detecting targets. A PTCA-COF with excellent ECL performance was loaded with a great amount of another ECL emitter Cu3(HHTP)2. Remarkably, the integrated composite had both ECL properties of PTCA-COF at 520 nm and Cu3(HHTP)2 at 600 nm wavelengths. Furthermore, Cu3(HHTP)2 with good electron transfer ability can greatly enhance the electrical conductivity and promote electrochemical activation. Thus, the simultaneous enhanced two-color ECL intensity and the catalytic properties of the conductive MOF exerted a dual enhancement effect on the ECL signal of the composite. Significantly, diclazepam can not only be adsorbed well on the multi-stage porous structure MOF/COF composite by π-π interactions but also selectively quench the ECL signal of the PTCA-COF, realizing the sensitive detection. The ECL sensor showed a wide detection range from 1.0 × 10-13 to 1.0 × 10-8 g/L, and the limit of detection (LOD) was as low as 2.6 × 10-14 g/L (S/N = 3). The proposed ECL sensor preparation method was simple and sensitive, providing a new perspective for the potential application of multi-color ECL in the sensing field.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Limite de Detecção , Diazepam , Catálise
7.
Biosens Bioelectron ; 224: 114963, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36603282

RESUMO

Current single signal electrochemiluminescence (ECL) sensors are susceptible to false positive or false negative phenomena due to experimental conditions. Therefore, sensors with "self-checking" function are attracting democratic attention. In quick succession, a highly sensitive single-cathode dual ECL signal aptasensor with self-checking function to improve the shortcomings mentioned above was designed. This aptasensor used In-based metal-organic framework (MIL-68) as load and stabilizer to effectively attenuate the aggregation-induced quenching (ACQ) effect of porphyrin derivatives (Sn-TCPP) while improve ECL stability. The introduction of cooperative-binding split-aptamers" (CBSAs) aptamers increased the specificity of the aptasensor and its unique double-binding domains detection accelerated the detection efficiency. When analyzing 3,4-methylenedioxypyrovalerone (MDPV), we could calculate two concentrations based on the strength of ECL 1 and ECL 2. If the concentrations are the same, the result would be obtained; if not, it should be retested. Depending on the above operation, the results achieve self-check. It was found that the designed aptasensor could quantify the concentration of MDPV between 1.0 × 10-12 g/L and 1.0 × 10-6 g/L with the limit of detection (LOD) of 1.4 × 10-13 g/L and 2.0 × 10-13 g/L, respectively (3 σ/slope). This study not only improves the detection technology of MDPV, but also explores the dual-signal detection of porphyrin for the first time and enriches the definition of self-checking sensor.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Sistemas Eletrônicos de Liberação de Nicotina , Nanopartículas Metálicas , Nanopartículas Metálicas/química , Catinona Sintética , Medições Luminescentes/métodos , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção
8.
Mikrochim Acta ; 189(9): 313, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35922727

RESUMO

A ternary composite material with Au, Co-based organic frameworks (ZIF-67) and perylene derivatives (PTCD-cys) has been synthesized for identification of synthetic cannabinoids. Through contact with Au-S, Au-ZIF-67 increased electrochemiluminescence (ECL) sensitivity and stability and efficiently catalyzed the ECL of PTCD-cys. Compared with the ECL response of PTCD-cys monomer, the ECL signal value of the composite material was significantly increased, and the onset potential of Au-ZIF-67/PTCD-cys favorably shifted more than that of PTCD-cys/GCE. When the target cannabinoid molecule RCS-4 appeared, Au-ZIF-67 captured and immobilized it on the sensor surface by adsorption to achieve target-induced self-enrichment of RCS-4. Under optimal conditions, the ECL sensor was found to be linearly related to the logarithm of the RCS-4 concentration ranging from 3.1 × 10-15 to 3.1 × 10-9 mol/L with a detection limit (LOD) of 6.0 × 10-16 mol/L (S/N = 3). The approach had the advantages of being simple to use, having a high sensitivity, a wide detection range, and good stability, making it a novel platform for RSC-4 detection in public health safety monitoring.


Assuntos
Canabinoides , Nanopartículas Metálicas , Catálise , Técnicas Eletroquímicas , Ouro , Medições Luminescentes
9.
Ecotoxicol Environ Saf ; 236: 113470, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35395601

RESUMO

The complex microbial community in food environment is a major problem of human or animal health and safety. Mycotoxins and food-borne bacteria can both induce inflammation in the body and cause a series of changes in biological functions. In this study, mice were gavaged with low doses of ZEA, DON, or ZEA + DON, and then infected with L. monocytogenes. A cytokine microarray, including 40 inflammation-related serum cytokines, and proteomics were used to verify the effects of ZEA, DON, and ZEA + DON on the host inflammation and biological function after L. monocytogenes infection. The results showed that mononucleosis after bacterial infection was inhibited by ZEA, DON, and ZEA + DON, while the balance of macrophage differentiation was shifted toward M2-type. ZEA, DON, and ZEA + DON decreased the levels of serum proinflammatory cytokines IL-1ß and IL-12 after infection. In addition, the signal of the NF-κB pathway was inhibited. Proteomic results showed that ZEA, DON, and ZEA + DON led to biological dysfunction in ribosomal and metabolic cells, primarily leading to abnormal ribosomal hyperfunction. This study showed that ZEA, DON, and ZEA + DON can aggravate disease progression by inhibiting the inflammatory response following foodborne bacterial infection. These metabolites may also disrupt normal biological functions, which may lead to ribosomal hyperfunction, making bacterial clearance more difficult.


Assuntos
Tricotecenos/farmacologia , Zearalenona , Animais , Citocinas/metabolismo , Inflamação/induzido quimicamente , Camundongos , Proteômica
10.
J Agric Food Chem ; 69(32): 9451-9460, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34372660

RESUMO

Lead (Pb) is a common toxic heavy metal pollutant in the environment that seriously endangers the health of animals. The liver is a key target organ affected by Pb toxicity. Plant extracts allicin and quercetin have a strong antioxidant capacity that can promote the excretion of heavy metals by improving the body's antioxidant defense and chelating heavy metal ions. To explore the preventive and therapeutic effects of allicin and quercetin on Pb poisoning in chickens, 96 chickens were randomly divided into eight groups: control, Pb, allicin, quercetin, allicin + quercetin, Pb + allicin, Pb + quercetin, and Pb + allicin + quercetin groups. The chickens were given feed containing the above treatments for 90 days. The results indicated that Pb can affect the growth and development of the liver, damage the circulatory system, destroy the structure of mitochondria and nuclei in liver cells, cause an imbalance in the oxidation system, inhibit PI3K protein, and activate the mitochondrial apoptotic pathway. Allicin and quercetin, alone or in combination, can improve the antioxidant capacity of the liver and alleviate liver tissue damage caused by Pb. In summary, allicin and quercetin could alleviate oxidative damage and apoptosis in the Pb-poisoned chicken liver through the PI3K signaling pathway, with stronger effects achieved by their combination.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Quercetina , Animais , Galinhas , Dissulfetos , Chumbo/toxicidade , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais , Ácidos Sulfínicos
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 224: 117451, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31404759

RESUMO

To illustrate the impact of molecular structure, especially heterocycle unit, on the sensing performance, two kinds of π-conjugated molecules containing aromatic heterocyclic (Dye 1) and aromatic ring (Dye 2) were identified and compared each other. Even with similar structures, they possessed quite different spectral and colorimetric responses to F-, Cl-, Br-, I-, NO3-, HSO4-, H2PO4-, ClO4- and CH3COO-, etc. The reason might result from the difference in withdraw-electron ability of aromatic and heterocyclic rings, which would lead to different acidity of active H in the target π-conjugated molecules. In acidic aqueous, Dye 1 expressed a reversible ratiometric-colorimetric response to F-, accompanying with a visual color change from bright yellow to purple, a nice linear range of 2.0-35.0 × 10-6 mol/L and a low detection limit of 1.60 × 10-7 mol/L. While Dye 2 did not react with any anion due to its weak acidity of active hydrogen. Under the optimized conditions, Dye 1 was successfully applied for colorimetric or naked-eye detection of F- in environmental water, tea and toothpaste samples with RSD ≤ 3.1%. The recognition mechanism for Dye 1 to F- was confirmed to be deprotonation one with a 1:1 binding stoichiometry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...