Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 14745, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679460

RESUMO

ABCF1 is the most characterized member of the ABCF family in eukaryotes with proposed functions related to innate immunity in fibroblasts, macrophages, and epithelial cells. Currently, a mechanistic link between ABCF1 and immune responses in human airway epithelial cells (HAECs) remains to be clearly defined. The present study aimed at characterizing the function of ABCF1 in the context of nuclear factor nuclear factor κB (NF-κB) mediated pro-inflammatory responses in an immortalized human airway epithelial cell line, HBEC-6KT. We demonstrated that with ABCF1 silencing under basal conditions, TNF Alpha Induced Protein 3 (TNFAIP3/A20) protein expression and downstream expression and activation of transcription factors, NF-κB and Interferon regulatory factor 3 (IRF-3), were not disrupted. We followed with investigations of ABCF1 function under a pro-inflammatory stimuli that are known to be regulated by A20. We demonstrated that under Polyinosinic:polycytidylic acid (Poly(I:C)) and tumor Necrosis Factor-α (TNF-α) challenge with ABCF1 silencing, there was a significant reduction in secreted levels of interleukin-8 (IL-8) and a trend for reduced IL-6. However, we observed no changes to the expression levels of A20 and the activation status of the transcription factors, NF-κB and IRF-3. Collectively, these studies demonstrate that Poly(I:C) and TNF-α induced IL-8 is regulated by ABCF1 via pathways independent of NF-κB and IRF-3 activation.


Assuntos
NF-kappa B , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/farmacologia , Interleucina-8/genética , Transdução de Sinais , Células Epiteliais , Poli I-C/farmacologia , Transportadores de Cassetes de Ligação de ATP
2.
Front Bioeng Biotechnol ; 10: 959335, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36329705

RESUMO

Integration of mechanical cues in conventional 2D or 3D cell culture platforms is an important consideration for in vivo and ex vivo models of lung health and disease. Available commercial and published custom-made devices are frequently limited in breadth of applications, scalability, and customization. Herein we present a technical report on an open-source, cell and tissue (CaT) stretcher, with modularity for different in vitro and ex vivo systems, that includes the following features: 1) Programmability for modeling different breathing patterns, 2) scalability to support low to high-throughput experimentation, and 3) modularity for submerged cell culture, organ-on-chips, hydrogels, and live tissues. The strategy for connecting the experimental cell or tissue samples to the stretching device were designed to ensure that traditional biomedical outcome measurements including, but not limited to microscopy, soluble mediator measurement, and gene and protein expression remained possible. Lastly, to increase the uptake of the device within the community, the system was built with economically feasible and available components. To accommodate diverse in vitro and ex vivo model systems we developed a variety of chips made of compliant polydimethylsiloxane (PDMS) and optimized coating strategies to increase cell adherence and viability during stretch. The CaT stretcher was validated for studying mechanotransduction pathways in lung cells and tissues, with an increase in alpha smooth muscle actin protein following stretch for 24 h observed in independent submerged monolayer, 3D hydrogel, and live lung tissue experiments. We anticipate that the open-source CaT stretcher design will increase accessibility to studies of the dynamic lung microenvironment through direct implementation by other research groups or custom iterations on our designs.

3.
Respir Res ; 22(1): 266, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34666750

RESUMO

INTRODUCTION: Over 300 million people in the world live with asthma, resulting in 500,000 annual global deaths with future increases expected. It is estimated that around 50-80% of asthma exacerbations are due to viral infections. Currently, a combination of long-acting beta agonists (LABA) for bronchodilation and glucocorticoids (GCS) to control lung inflammation represent the dominant strategy for the management of asthma, however, it is still sub-optimal in 35-50% of moderate-severe asthmatics resulting in persistent lung inflammation, impairment of lung function, and risk of mortality. Mechanistically, LABA/GCS combination therapy results in synergistic efficacy mediated by intracellular cyclic adenosine monophosphate (cAMP). HYPOTHESIS: Increasing intracellular cAMP during LABA/GCS combination therapy via inhibiting phosphodiesterase 4 (PDE4) and/or blocking the export of cAMP by ATP Binding Cassette Transporter C4 (ABCC4), will potentiate anti-inflammatory responses of mainstay LABA/GCS therapy. METHODS: Expression and localization experiments were performed using in situ hybridization and immunohistochemistry in human lung tissue from healthy subjects, while confirmatory transcript and protein expression analyses were performed in primary human airway epithelial cells and cell lines. Intervention experiments were performed on the human airway epithelial cell line, HBEC-6KT, by pre-treatment with combinations of LABA/GCS with PDE4 and/or ABCC4 inhibitors followed by Poly I:C or imiquimod challenge as a model for viral stimuli. Cytokine readouts for IL-6, IL-8, CXCL10/IP-10, and CCL5/RANTES were quantified by ELISA. RESULTS: Using archived human lung and human airway epithelial cells, ABCC4 gene and protein expression were confirmed in vitro and in situ. LABA/GCS attenuation of Poly I:C or imiquimod-induced IL-6 and IL-8 were potentiated with ABCC4 and PDE4 inhibition, which was greater when ABCC4 and PDE4 inhibition was combined. Modulation of cAMP levels had no impact on LABA/GCS modulation of Poly I:C-induced CXCL10/IP-10 or CCL5/RANTES. CONCLUSION: Modulation of intracellular cAMP levels by PDE4 or ABCC4 inhibition potentiates LABA/GCS efficacy in human airway epithelial cells challenged with viral stimuli. The data suggest further exploration of the value of adding cAMP modulators to mainstay LABA/GCS therapy in asthma for potentiated anti-inflammatory efficacy.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Budesonida/farmacologia , AMP Cíclico/metabolismo , Células Epiteliais/efeitos dos fármacos , Fumarato de Formoterol/farmacologia , Glucocorticoides/farmacologia , Pulmão/efeitos dos fármacos , Aminopiridinas/farmacologia , Benzamidas/farmacologia , Benzotiazóis/farmacologia , Linhagem Celular , Quimiocinas/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Ácidos Cicloexanocarboxílicos/farmacologia , Ciclopropanos/farmacologia , Sinergismo Farmacológico , Quimioterapia Combinada , Células Epiteliais/metabolismo , Humanos , Pulmão/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Nitrilas/farmacologia , Inibidores da Fosfodiesterase 4/farmacologia , Rolipram/farmacologia , Sistemas do Segundo Mensageiro , Triazóis/farmacologia
4.
Cell Rep ; 37(4): 109892, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34672947

RESUMO

The main viral protease (3CLpro) is indispensable for SARS-CoV-2 replication. We delineate the human protein substrate landscape of 3CLpro by TAILS substrate-targeted N-terminomics. We identify more than 100 substrates in human lung and kidney cells supported by analyses of SARS-CoV-2-infected cells. Enzyme kinetics and molecular docking simulations of 3CLpro engaging substrates reveal how noncanonical cleavage sites, which diverge from SARS-CoV, guide substrate specificity. Cleaving the interactors of essential effector proteins, effectively stranding them from their binding partners, amplifies the consequences of proteolysis. We show that 3CLpro targets the Hippo pathway, including inactivation of MAP4K5, and key effectors of transcription, mRNA processing, and translation. We demonstrate that Spike glycoprotein directly binds galectin-8, with galectin-8 cleavage disengaging CALCOCO2/NDP52 to decouple antiviral-autophagy. Indeed, in post-mortem COVID-19 lung samples, NDP52 rarely colocalizes with galectin-8, unlike in healthy lungs. The 3CLpro substrate degradome establishes a foundational substrate atlas to accelerate exploration of SARS-CoV-2 pathology and drug design.


Assuntos
COVID-19 , Proteases 3C de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , Humanos , Especificidade por Substrato
5.
ACS Biomater Sci Eng ; 7(11): 5301-5314, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34696583

RESUMO

This work describes a versatile and cost-effective cell culture method for micropatterning and growing adherent cells on porous membranes using pressure-sensitive double-sided adhesives. This technique also allows cell culture using conventional methods and their easy integration into microfluidic chip devices. Adhesives can be used to form different patterns of cultured cells, which can be used for cell proliferation and wound-healing models. To demonstrate the viability of our system, we evaluate the toxicity effect of five different adhesives on two distinct airway epithelial cell lines and show functional applications for cell patterning and microfluidic cell culture chip fabrication. We developed a sandwiched microfluidic device that enabled us to culture cells in a submerged condition and transformed it into a dynamic platform when required. The viability of cells and their inflammatory responses to IL-1ß stimulation were investigated. Our technique is applicable for conventional culturing of cells, widely available in biomedical research labs, while enabling the introduction of perfusion for an advanced dynamic cell culture model when needed.


Assuntos
Adesivos , Microfluídica , Células Epiteliais , Dispositivos Lab-On-A-Chip , Pulmão
6.
Toxicol In Vitro ; 77: 105253, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34601066

RESUMO

The airway epithelium is exposed to a variety of air pollutants, which have been associated with the onset and worsening of respiratory diseases. These air pollutants can vary depending on their composition and associated chemicals, leading to different molecular interactions and biological effects. Mucociliary clearance is an important host defense mechanism against environmental air pollutants and this process is regulated by various ion transporters including the cystic fibrosis transmembrane conductance regulator (CFTR). With evidence suggesting that environmental air pollutants can lead to acquired CFTR dysfunction, it may be possible to leverage therapeutic approaches used in cystic fibrosis (CF) management. The aim of our study was to test whether environmental air pollutants tobacco smoke extract, urban particulate matter, and diesel exhaust particles lead to acquired CFTR dysfunction and whether it could be rescued with pharmacological interventions. Human airway epithelial cells (Calu-3) were exposed to air pollutant extracts for 24 h, with and without pharmacological interventions, with readouts of CFTR expression and function. We demonstrate that both tobacco smoke extract and diesel exhaust particles led to acquired CFTR dysfunction and that rescue of acquired CFTR dysfunction is possible with pharmacological interventions in diesel exhaust particle models. Our study emphasizes that CFTR function is not only important in the context of CF but may also play a role in other respiratory diseases impacted by environmental air pollutants. In addition, the pharmacological interventions approved for CF management may be more broadly leveraged for chronic respiratory disease management.


Assuntos
Poluentes Atmosféricos/toxicidade , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Western Blotting , Humanos , Potenciais da Membrana/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Poluição por Fumaça de Tabaco/efeitos adversos , Emissões de Veículos/toxicidade
7.
iScience ; 24(6): 102619, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34159300

RESUMO

Despite the remarkable success of chimeric antigen receptor (CAR)-T cells against hematologic malignancies, severe off-tumor effects have constrained their use against solid tumors. Recently, CAR-engineered natural killer (NK) cells have emerged as an effective and safe alternative. Here, we demonstrate that HER2 CAR-expression in NK cells from healthy donors and patients with breast cancer potently enhances their anti-tumor functions against various HER2-expressing cancer cells, regardless of MHC class I expression. Moreover, HER2 CAR-NK cells exert higher cytotoxicity than donor-matched HER2 CAR-T cells against tumor targets. Importantly, unlike CAR-T cells, HER2 CAR-NK cells do not elicit enhanced cytotoxicity or inflammatory cytokine production against non-malignant human lung epithelial cells with basal HER2 expression. Further, HER2 CAR-NK cells maintain high cytotoxic function in the presence of immunosuppressive factors enriched in solid tumors. These results show that CAR-NK cells may be a highly potent and safe source of immunotherapy in the context of solid tumors.

8.
Int J Biochem Cell Biol ; 133: 105936, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33529712

RESUMO

ATP binding cassette (ABC) transporters are present in all three domains of life - Archaea, Bacteria, and Eukarya. The conserved nature is a testament to the importance of these transporters in regulating endogenous and exogenous substrates required for life to exist. In humans, 49 ABC transporters have been identified to date with broad expression in different lung cell types with multiple transporter family members contributing to lung health and disease. The ABC transporter most commonly known to be linked to lung pathology is ABCC7, also known as cystic fibrosis transmembrane conductance regulator - CFTR. Closely related to the CFTR genomic sequence is ABCC4/multi-drug resistance protein-4. Genomic proximity is shared with physical proximity, with ABCC4 and CFTR physically coupled in cell membrane microenvironments of epithelial cells to orchestrate functional consequences of cyclic-adenosine monophosphate (cAMP)-dependent second messenger signaling and extracellular transport of endogenous and exogenous substrates. The present concise review summarizes the emerging data defining a role of the (ABCC7/CFTR)-ABCC4 macromolecular complex in human airway epithelial cells as a physiologically important pathway capable of impacting endogenous and exogenous mediator transport and ion transport in both lung health and disease.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/patologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Mucosa Respiratória/patologia , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/metabolismo , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Domínios e Motivos de Interação entre Proteínas , Mucosa Respiratória/metabolismo
9.
ERJ Open Res ; 7(1)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33614779

RESUMO

Accessible in vitro models recapitulating the human airway that are amenable to study whole cannabis smoke exposure are needed for immunological and toxicological studies that inform public health policy and recreational cannabis use. In the present study, we developed and validated a novel three-dimensional (3D)-printed in vitro exposure system (IVES) that can be directly applied to study the effect of cannabis smoke exposure on primary human bronchial epithelial cells. Using commercially available design software and a 3D printer, we designed a four-chamber Transwell insert holder for exposures to whole smoke. COMSOL Multiphysics software was used to model gas distribution, concentration gradients, velocity profile and shear stress within IVES. Following simulations, primary human bronchial epithelial cells cultured at the air-liquid interface on Transwell inserts were exposed to whole cannabis smoke using a modified version of the Foltin puff procedure. Following 24 h, outcome measurements included cell morphology, epithelial barrier function, lactate dehydrogenase (LDH) levels, cytokine expression and gene expression. Whole smoke delivered through IVES possesses velocity profiles consistent with uniform gas distribution across the four chambers and complete mixing. Airflow velocity ranged between 1.0 and 1.5 µm·s-1 and generated low shear stresses (<<1 Pa). Human airway epithelial cells exposed to cannabis smoke using IVES showed changes in cell morphology and disruption of barrier function without significant cytotoxicity. Cannabis smoke elevated interleukin-1 family cytokines and elevated CYP1A1 and CYP1B1 expression relative to control, validating IVES smoke exposure impacts in human airway epithelial cells at a molecular level. The growing legalisation of cannabis on a global scale must be paired with research related to potential health impacts of lung exposures. IVES represents an accessible, open-source, exposure system that can be used to model varying types of cannabis smoke exposures with human airway epithelial cells grown under air-liquid interface culture conditions.

10.
Artigo em Inglês | MEDLINE | ID: mdl-33042865

RESUMO

Background: The airway epithelium represents a critical component of the human lung that helps orchestrate defenses against respiratory tract viral infections, which are responsible for more than 2.5 million deaths/year globally. Innate immune activities of the airway epithelium rely on Toll-like receptors (TLRs), nucleotide binding and leucine-rich-repeat pyrin domain containing (NLRP) receptors, and cytosolic nucleic acid sensors. ATP Binding Cassette (ABC) transporters are ubiquitous across all three domains of life-Archaea, Bacteria, and Eukarya-and expressed in the human airway epithelium. ABCF1, a unique ABC family member that lacks a transmembrane domain, has been defined as a cytosolic nucleic acid sensor that regulates CXCL10, interferon-ß expression, and downstream type I interferon responses. We tested the hypothesis that ABCF1 functions as a dsDNA nucleic acid sensor in human airway epithelial cells important in regulating antiviral responses. Methods: Expression and localization experiments were performed using in situ hybridization and immunohistochemistry in human lung tissue, while confirmatory transcript and protein expression was performed in human airway epithelial cells. Functional experiments were performed with siRNA methods in a human airway epithelial cell line. Complementary transcriptomic analyses were performed to explore the contributions of ABCF1 to gene expression patterns. Results: Using archived human lung and human airway epithelial cells, we confirm expression of ABCF1 gene and protein expression in these tissue samples, with a role for mediating CXCL10 production in response to dsDNA viral mimic challenge. Although, ABCF1 knockdown was associated with an attenuation of select genes involved in the antiviral responses, Gene Ontology analyses revealed a greater interaction of ABCF1 with TLR signaling suggesting a multifactorial role for ABCF1 in innate immunity in human airway epithelial cells. Conclusion: ABCF1 is a candidate cytosolic nucleic acid sensor and modulator of TLR signaling that is expressed at gene and protein levels in human airway epithelial cells. The precise level where ABCF1 protein functions to modulate immune responses to pathogens remains to be determined but is anticipated to involve IRF-3 and CXCL10 production.


Assuntos
Células Epiteliais , Transdução de Sinais , Transportadores de Cassetes de Ligação de ATP , Humanos , Imunidade Inata , Pulmão , Receptores Toll-Like
11.
Eur Respir J ; 56(3)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32675206

RESUMO

In December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged, causing the coronavirus disease 2019 (COVID-19) pandemic. SARS-CoV, the agent responsible for the 2003 SARS outbreak, utilises angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) host molecules for viral entry. ACE2 and TMPRSS2 have recently been implicated in SARS-CoV-2 viral infection. Additional host molecules including ADAM17, cathepsin L, CD147 and GRP78 may also function as receptors for SARS-CoV-2.To determine the expression and in situ localisation of candidate SARS-CoV-2 receptors in the respiratory mucosa, we analysed gene expression datasets from airway epithelial cells of 515 healthy subjects, gene promoter activity analysis using the FANTOM5 dataset containing 120 distinct sample types, single cell RNA sequencing (scRNAseq) of 10 healthy subjects, proteomic datasets, immunoblots on multiple airway epithelial cell types, and immunohistochemistry on 98 human lung samples.We demonstrate absent to low ACE2 promoter activity in a variety of lung epithelial cell samples and low ACE2 gene expression in both microarray and scRNAseq datasets of epithelial cell populations. Consistent with gene expression, rare ACE2 protein expression was observed in the airway epithelium and alveoli of human lung, confirmed with proteomics. We present confirmatory evidence for the presence of TMPRSS2, CD147 and GRP78 protein in vitro in airway epithelial cells and confirm broad in situ protein expression of CD147 and GRP78 in the respiratory mucosa.Collectively, our data suggest the presence of a mechanism dynamically regulating ACE2 expression in human lung, perhaps in periods of SARS-CoV-2 infection, and also suggest that alternative receptors for SARS-CoV-2 exist to facilitate initial host cell infection.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus , Pandemias , Peptidil Dipeptidase A , Pneumonia Viral , Serina Endopeptidases , Enzima de Conversão de Angiotensina 2 , COVID-19 , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Chaperona BiP do Retículo Endoplasmático , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Humanos , Pulmão/metabolismo , Pulmão/virologia , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , Receptores Virais/classificação , Receptores Virais/genética , Receptores Virais/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/virologia , SARS-CoV-2 , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...