Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38927910

RESUMO

The therapeutic potential of targeting the ß-catenin/CBP interaction has been demonstrated in a variety of preclinical tumor models with a small molecule inhibitor, ICG-001, characterized as a ß-catenin/CBP antagonist. Despite the high binding specificity of ICG-001 for the N-terminus of CBP, this ß-catenin/CBP antagonist exhibits pleiotropic effects. Our recent studies found global changes in three-dimensional (3D) chromatin architecture in response to disruption of the ß-catenin/CBP interaction in pancreatic cancer cells. However, an understanding of how the functional crosstalk between the antagonist and the ß-catenin/CBP interaction affects changes in 3D chromatin architecture and, thereby, gene expression and downstream effects remains to be elucidated. Here, we perform Hi-C analyses on canonical and patient-derived pancreatic cancer cells before and after treatment with ICG-001. In addition to global alteration of 3D chromatin domains, we unexpectedly identify insulin signaling genes enriched in the altered chromatin domains. We further demonstrate that the chromatin loops associated with insulin signaling genes are significantly weakened after ICG-001 treatment. We finally elicit the deletion of a looping of IRS1-a key insulin signaling gene-significantly impeding pancreatic cancer cell growth, indicating that looping-mediated insulin signaling might act as an oncogenic pathway to promote pancreatic cancer progression. Our work shows that targeting aberrant insulin chromatin looping in pancreatic cancer might provide a therapeutic benefit.

2.
Heliyon ; 10(7): e24743, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38617924

RESUMO

Background: Ischemic stroke is a severe disorder with high incidence, disability rate and mortality. Multiple pathogenesis mechanisms are involved in ischemic stroke, such as inflammation and neuronal cell apoptosis. Protein inhibitor of activated signal transducer and activators of transcription 1 (PIAS1) plays a crucial role in various biological processes, including inflammation. PIAS1 is also downregulated in ischemia-reperfusion injury and involved in the disease processes. However, the role of PIAS1 in cerebral ischemia is unclear. Methods: Sprague-Dawley (SD) rats were induced with middle cerebral artery occlusion (MCAO). The role and mechanisms of PIAS1 in ischemic cerebral infarction were explored by Longa test, 2,3,5-triphenyltetrazolium chloride (TTC) staining, Morris water maze (MWM) test, hematoxylin-eosin (HE) staining, quantification of brain water content, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL), Western blot and immunofluorescence assays. Results: The expression of PIAS1 in MCAO-induced rat was declined compared to sham rats. Overexpression of PIAS1 reduced the Longa neurological scores, the percent of infarction area, the pathological abnormality, the escape latency of swimming and the percent of brain water content, and increased the number of platform crossings and time in the target quadrant in the MCAO-induced rats. Besides, overexpression of PIAS1 decreased the MCAO-induced the contents of IL-1ß, IL-6 and TNF-α, but further elevated the concentrations of IL-10 in both sera and brain tissues. Moreover, overexpression of PIAS1 reversed the MCAO-induced apoptosis rate and the relative protein level of Bax, cleaved caspase3 and Bcl-2. Overexpression of PIAS1 also reversed the level of proteins involved in NF-κB pathway. Conclusion: PIAS1 reduced inflammation and apoptosis, thereby alleviating ischemic cerebral infarction in MCAO-induced rats through regulation NF-κB pathway.

3.
Metabolites ; 14(2)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38393018

RESUMO

Circadian rhythm disruption is associated with impaired glucose homeostasis and type 2 diabetes. For example, night shift work is associated with an increased risk of gestational diabetes. However, the effects of chronic circadian disruption since early life on adult metabolic health trajectory remain unknown. Here, using the "Short Day" (SD) mouse model, in which an 8 h/8 h light/dark (LD) cycle was used to disrupt mouse circadian rhythms across the lifespan, we investigated glucose homeostasis in adult mice. Adult SD mice were fully entrained into the 8 h/8 h LD cycle, and control mice were entrained into the 12 h/12 h LD cycle. Under a normal chow diet, female and male SD mice displayed a normal body weight trajectory. However, female but not male SD mice under a normal chow diet displayed glucose intolerance and insulin resistance, which are associated with impaired insulin signaling/AKT in the skeletal muscle and liver. Under high-fat diet (HFD) challenges, male but not female SD mice demonstrated increased body weight gain compared to controls. Both male and female SD mice developed glucose intolerance under HFD. Taken together, these results demonstrate that environmental disruption of circadian rhythms contributes to obesity in a sexually dimorphic manner but increases the risk of glucose intolerance and insulin resistance in both males and females.

4.
Neurosci Biobehav Rev ; 157: 105523, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142983

RESUMO

The circadian rhythm affects multiple physiological processes, and disruption of the circadian system can be involved in a range of disease-related pathways. The genetic underpinnings of the circadian rhythm have been well-studied in model organisms. Significant progress has been made in understanding how clock genes affect the physiological functions of the nervous system. In addition, circadian timing is becoming a key factor in improving drug efficacy and reducing drug toxicity. The circadian biology of the target cell determines how the organ responds to the drug at a specific time of day, thus regulating pharmacodynamics. The current review brings together recent advances that have begun to unravel the molecular mechanisms of how the circadian clock affects neurophysiological and behavioral processes associated with human brain diseases. We start with a brief description of how the ubiquitous circadian rhythms are regulated at the genetic, cellular, and neural circuit levels, based on knowledge derived from extensive research on model organisms. We then summarize the latest findings from genetic studies of human brain disorders, focusing on the role of human clock gene variants in these diseases. Lastly, we discuss the impact of common dietary factors and medications on human circadian rhythms and advocate for a broader application of the concept of chronomedicine.


Assuntos
Relógios Circadianos , Neurociências , Humanos , Neurofisiologia , Ritmo Circadiano/genética , Relógios Circadianos/genética
5.
bioRxiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38013997

RESUMO

The therapeutic potential of targeting the ß-catenin/CBP interaction has been demonstrated in a variety of preclinical tumor models with a small molecule inhibitor, ICG-001, characterized as a ß-catenin/CBP antagonist. Despite the high binding specificity of ICG-001 for the N-terminus of CBP, this ß-catenin/CBP antagonist exhibits pleiotropic effects. Our recent studies found global changes in three-dimensional (3D) chromatin architecture in response to disruption of the ß-catenin/CBP interaction in pancreatic cancer cells. However, an understanding of the functional crosstalk between antagonizing the ß-catenin/CBP interaction effect changes in 3D chromatin architecture and thereby gene expression and downstream effects remains to be elucidated. Here we perform Hi-C analyses on canonical and patient-derived pancreatic cancer cells before and after the treatment with ICG-001. In addition to global alteration of 3D chromatin domains, we unexpectedly identify insulin signaling genes enriched in the altered chromatin domains. We further demonstrate the chromatin loops associated with insulin signaling genes are significantly weakened after ICG-001 treatment. We finally elicit the deletion of a looping of IRS1, a key insulin signaling gene, significantly impede pancreatic cancer cell growth, indicating that looping-mediated insulin signaling might act as an oncogenic pathway to promote pancreatic cancer progression. Our work shows that targeting aberrant insulin chromatin looping in pancreatic cancer might provide a therapeutic benefit.

6.
Clocks Sleep ; 5(4): 639-650, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37987394

RESUMO

The circadian clock regulates a variety of biological processes that are normally synchronized with the solar day. Disruption of circadian rhythms is associated with health problems. Understanding the signaling mechanisms that couple cell physiology and metabolism to circadian timekeeping will help to develop novel therapeutic strategies. The integrated stress response (ISR) is activated by the cellular stressors to maintain physiological homeostasis by orchestrating mRNA translation. Aberrant ISR has been found in a number of neurological diseases that exhibit disrupted circadian rhythms and sleep. Recent work has started to uncover a critical role for the ISR in regulating the physiology of the circadian clock. Guanabenz (2,6-dichlorobenzylidene aminoguanidine acetate) is an orally bioavailable α2-adrenergic receptor agonist that has been used as an antihypertensive for decades. Recent studies demonstrated that guanabenz can regulate the ISR. Here, we assessed the effects of guanabenz on cellular and behavioral circadian rhythms using a multidisciplinary approach. We found that guanabenz can induce the ISR by increasing eIF2α phosphorylation in cultured fibroblasts as well as in the mouse brain. The hyperphosphorylation of eIF2α by guanabenz is associated with the shortened circadian period in cells and animals and the disruption of behavioral circadian rhythms in mice. Guanabenz administration disrupted circadian oscillations of the clock protein Per1 and Per2 in the mouse suprachiasmatic nucleus, the master pacemaker. These results uncover a significant yet previously unidentified role of guanabenz in regulating circadian rhythms and indicate that exacerbated ISR activation can impair the functions of the brain's circadian clock by disrupting clock gene expression.

7.
Brain ; 146(5): 2175-2190, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36315645

RESUMO

MAPK interacting protein kinases 1 and 2 (Mnk1/2) regulate a plethora of functions, presumably via phosphorylation of their best characterized substrate, eukaryotic translation initiation factor 4E (eIF4E) on Ser209. Here, we show that, whereas deletion of Mnk1/2 (Mnk double knockout) impairs synaptic plasticity and memory in mice, ablation of phospho-eIF4E (Ser209) does not affect these processes, suggesting that Mnk1/2 possess additional downstream effectors in the brain. Translational profiling revealed only a small overlap between the Mnk1/2- and phospho-eIF4E(Ser209)-regulated translatome. We identified the synaptic Ras GTPase activating protein 1 (Syngap1), encoded by a syndromic autism gene, as a downstream target of Mnk1 because Syngap1 immunoprecipitated with Mnk1 and showed reduced phosphorylation (S788) in Mnk double knockout mice. Knockdown of Syngap1 reversed memory deficits in Mnk double knockout mice and pharmacological inhibition of Mnks rescued autism-related phenotypes in Syngap1+/- mice. Thus, Syngap1 is a downstream effector of Mnk1, and the Mnks-Syngap1 axis regulates memory formation and autism-related behaviours.


Assuntos
Transtorno Autístico , Fator de Iniciação 4E em Eucariotos , Animais , Camundongos , Fator de Iniciação 4E em Eucariotos/genética , Camundongos Knockout , Fosforilação , Proteínas Ativadoras de ras GTPase/metabolismo
8.
Carbohydr Polym ; 300: 120272, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36372494

RESUMO

The aim of this study was to design a pectin-chitosan (PEC-CS) hydrogel loaded with a bioadhesive-design micelle containing large amount of ciprofloxacin for antibacterial and healing wound applications. Pectin and chitosan are crosslinked in a safe and convenient way, and the PEC-CS hydrogel have high water content (>95 %), strong water absorption (15,000 %), good water retention (>10,000 % at 30 % RH for 12 h), and the PEC-CS hydrogels showed no cytotoxicity and hemolysis, thus providing a humid microenvironment suitable for wound. Additionally, the dopamine modified carrier can greatly improve the solubility and retention time in the wound of ciprofloxacin, effectively increase the efficiency of drug loading into the PEC-CS hydrogels and exert antibacterial activity in the wound for a long time. In vitro and in vivo pharmacodynamics experiments have shown that PEC-CS#CIP@DPDMCs hydrogels can resist bacteria and promote wound healing. Thus,The PEC-CS#CIP@DPDMCs hydrogels can be a potential anti-infective hydrogel excipient.


Assuntos
Infecções Bacterianas , Quitosana , Humanos , Hidrogéis/farmacologia , Pectinas/farmacologia , Micelas , Cicatrização , Ciprofloxacina , Antibacterianos/farmacologia , Água
9.
Transl Psychiatry ; 12(1): 355, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36045116

RESUMO

Circadian (~24 h) rhythms in physiology and behavior are evolutionarily conserved and found in almost all living organisms. The rhythms are endogenously driven by daily oscillatory activities of so-called "clock genes/proteins", which are widely distributed throughout the mammalian brain. Mammalian (mechanistic) target of rapamycin (mTOR) signaling is a fundamental intracellular signal transduction cascade that controls important neuronal processes including neurodevelopment, synaptic plasticity, metabolism, and aging. Dysregulation of the mTOR pathway is associated with psychiatric disorders including autism spectrum disorders (ASD) and mood disorders (MD), in which patients often exhibit disrupted daily physiological rhythms and abnormal circadian gene expression in the brain. Recent work has found that the activities of mTOR signaling are temporally controlled by the circadian clock and exhibit robust circadian oscillations in multiple systems. In the meantime, mTOR signaling regulates fundamental properties of the central and peripheral circadian clocks, including period length, entrainment, and synchronization. Whereas the underlying mechanisms remain to be fully elucidated, increasing clinical and preclinical evidence support significant crosstalk between mTOR signaling, the circadian clock, and psychiatric disorders. Here, we review recent progress in understanding the trilateral interactions and propose an "interaction triangle" model between mTOR signaling, the circadian clock, and psychiatric disorders (focusing on ASD and MD).


Assuntos
Relógios Circadianos , Transtornos Mentais , Serina-Treonina Quinases TOR , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Humanos , Transtornos Mentais/genética , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
10.
Int J Mol Sci ; 23(11)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35682995

RESUMO

Approximately 50-80% of children with autism spectrum disorders (ASDs) exhibit sleep problems, but the contribution of circadian clock dysfunction to the development of ASDs remains largely unknown. The essential clock gene Bmal1 (Arntl or Mop3) has been associated with human sociability, and its missense mutation is found in ASD. Our recent study found that Bmal1-null mice exhibit a variety of autism-like phenotypes. Here, we further investigated whether an incomplete loss of Bmal1 function could cause significant autism-like behavioral changes in mice. Our results demonstrated that heterozygous Bmal1 deletion (Bmal1+/-) reduced the Bmal1 protein levels by ~50-75%. Reduced Bmal1 expression led to decreased levels of clock proteins, including Per1, Per2, Cry 1, and Clock but increased mTOR activities in the brain. Accordingly, Bmal1+/- mice exhibited aberrant ultrasonic vocalizations during maternal separation, deficits in sociability and social novelty, excessive repetitive behaviors, impairments in motor coordination, as well as increased anxiety-like behavior. The novel object recognition memory remained intact. Together, these results demonstrate that haploinsufficiency of Bmal1 can cause autism-like behavioral changes in mice, akin to those identified in Bmal1-null mice. This study provides further experimental evidence supporting a potential role for disrupted clock gene expression in the development of ASD.


Assuntos
Transtorno Autístico , Relógios Circadianos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Transtorno Autístico/genética , Encéfalo/metabolismo , Proteínas CLOCK/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Haploinsuficiência , Privação Materna , Camundongos , Camundongos Knockout , Fenótipo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
11.
Eur J Neurosci ; 56(1): 3553-3569, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35481869

RESUMO

Although it is well recognized that the circadian timing system profoundly influences cognitive performance, the underlying molecular mechanisms remain poorly defined. Our previous work has found that the mitogen-activated protein kinase-interacting kinase (MNK)-eukaryotic translation initiation factor 4E (eIF4E) axis, a conserved cellular signalling pathway regulating mRNA translation, modulates the function of the suprachiasmatic nucleus (SCN), the master circadian clock. Here, with the use of a combination of genetic, biochemical and behavioural approaches, we investigated the distribution and temporal regulation of eIF4E phosphorylation in the brain and its role in regulating the diurnal oscillations of some aspects of cognition in mice. We found that activities of the MNK-eIF4E axis, as indicated by the level of eIF4E phosphorylation at Ser209, exhibited significant circadian oscillations in a variety of brain regions, including but not limited to the prefrontal cortex, the hippocampus, the amygdala and the cerebellum. Phosphorylated eIF4E was enriched in neurons but not in astrocytes or microglia. Mice lacking eIF4E phosphorylation (eIF4ES209A/S209A ) or the MNKs (Mnk1-/-,2-/- ), the kinases that phosphorylate eIF4E, exhibited impaired diurnal variations of novel object recognition, object location memory, Barnes maze learning and ambulatory activities. Together, these results suggest that circadian activities of the MNK-eIF4E axis contribute to the diurnal rhythms of some cognitive functions, highlighting a role for rhythmic translational control in circadian regulation of cognitive performance.


Assuntos
Ritmo Circadiano , Fator de Iniciação 4E em Eucariotos , Animais , Ritmo Circadiano/fisiologia , Cognição , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Camundongos , Fosforilação , Transdução de Sinais , Núcleo Supraquiasmático/metabolismo
12.
Mol Psychiatry ; 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301425

RESUMO

Although circadian and sleep disorders are frequently associated with autism spectrum disorders (ASD), it remains elusive whether clock gene disruption can lead to autistic-like phenotypes in animals. The essential clock gene Bmal1 has been associated with human sociability and its missense mutations are identified in ASD. Here we report that global Bmal1 deletion led to significant social impairments, excessive stereotyped and repetitive behaviors, as well as motor learning disabilities in mice, all of which resemble core behavioral deficits in ASD. Furthermore, aberrant cell density and immature morphology of dendritic spines were identified in the cerebellar Purkinje cells (PCs) of Bmal1 knockout (KO) mice. Electrophysiological recordings uncovered enhanced excitatory and inhibitory synaptic transmission and reduced firing rates in the PCs of Bmal1 KO mice. Differential expression of ASD- and ataxia-associated genes (Ntng2, Mfrp, Nr4a2, Thbs1, Atxn1, and Atxn3) and dysregulated pathways of translational control, including hyperactivated mammalian target of rapamycin complex 1 (mTORC1) signaling, were identified in the cerebellum of Bmal1 KO mice. Interestingly, the antidiabetic drug metformin reversed mTORC1 hyperactivation and alleviated major behavioral and PC deficits in Bmal1 KO mice. Importantly, conditional Bmal1 deletion only in cerebellar PCs was sufficient to recapitulate autistic-like behavioral and cellular changes akin to those identified in Bmal1 KO mice. Together, these results unveil a previously unidentified role for Bmal1 disruption in cerebellar dysfunction and autistic-like behaviors. Our findings provide experimental evidence supporting a putative role for dysregulation of circadian clock gene expression in the pathogenesis of ASD.

13.
Cells ; 10(12)2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34943821

RESUMO

Although circadian rhythms are thought to be essential for maintaining body health, the effects of chronic circadian disruption during neurodevelopment remain elusive. Here, using the "Short Day" (SD) mouse model, in which an 8 h/8 h light/dark (LD) cycle was applied from embryonic day 1 to postnatal day 42, we investigated the molecular and behavioral changes after circadian disruption in mice. Adult SD mice fully entrained to the 8 h/8 h LD cycle, and the circadian oscillations of the clock proteins, PERIOD1 and PERIOD2, were disrupted in the suprachiasmatic nucleus and the hippocampus of these mice. By RNA-seq widespread changes were identified in the hippocampal transcriptome, which are functionally associated with neurodevelopment, translational control, and autism. By western blotting and immunostaining hyperactivation of the mTOR and MAPK signaling pathways and enhanced global protein synthesis were found in the hippocampi of SD mice. Electrophysiological recording uncovered enhanced excitatory, but attenuated inhibitory, synaptic transmission in the hippocampal CA1 pyramidal neurons. These functional changes at synapses were corroborated by the immature morphology of the dendritic spines in these neurons. Lastly, autistic-like animal behavioral changes, including impaired social interaction and communication, increased repetitive behaviors, and impaired novel object recognition and location memory, were found in SD mice. Together, these results demonstrate molecular, cellular, and behavioral changes in SD mice, all of which resemble autistic-like phenotypes caused by circadian rhythm disruption. The findings highlight a critical role for circadian rhythms in neurodevelopment.


Assuntos
Envelhecimento/patologia , Transtorno Autístico/fisiopatologia , Comportamento Animal , Encéfalo/embriologia , Encéfalo/efeitos da radiação , Ritmo Circadiano/fisiologia , Luz , Animais , Transtorno Autístico/genética , Relógios Biológicos/genética , Ritmo Circadiano/genética , Espinhas Dendríticas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genoma , Hipocampo/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Atividade Motora , Fotoperíodo , Biossíntese de Proteínas , Fatores de Risco , Transmissão Sináptica , Serina-Treonina Quinases TOR/metabolismo , Transcrição Gênica
14.
Clin Epigenetics ; 13(1): 175, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535185

RESUMO

BACKGROUND: Organoids or spheroids have emerged as a physiologically relevant in vitro preclinical model to study patient-specific diseases. A recent study used spheroids of MCF10 cells to model breast cancer progression and identified targetable alterations more similar to those in vivo. Thus, it is practical and essential to explore and characterize the spheroids of the commonly used human breast cancer (BC) cells. METHODS: In this study, we conducted Hi-C analyses in three-dimensional (3D) spheroids of MCF10A, MCF7 and MCF7TR cells and compared TADs and looping genes with those in 2D monolayers. Furthermore, we performed in silico functional analysis on 3D-growth-specific looping genes and to compare patient outcomes with or without endocrinal therapy. Finally, we performed 3C/RT-qPCR validations in 3D spheroids and 3D-FISH confirmations in organoids of breast cancer patient tissues. RESULTS: We found that chromatin structures have experienced drastic changes during the 3D culture growth of BC cells although there is not much change in the quantity of chromatin domains. We also observed that the strengths of looping genes were statistically different between 2D monolayers and 3D spheroids. We further identified novel 3D growth-specific looping genes within Hippo relevant pathways, of which two genes showed potential prognostic values in measuring the outcome of the endocrine treatment. We finally confirmed a few selected genes in Hippo relevant pathways with enhanced looping in organoids of breast cancer patient tissues. CONCLUSIONS: Hence, our work has provided significant insights into our understanding of 3D-growth-specific chromatin architecture in tamoxifen-resistant breast cancer. Our analyses suggest that the strengthened looping-mediated Hippo relevant pathways may contribute to endocrine therapy resistance in breast cancer patients.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Cromatina/metabolismo , Disruptores Endócrinos/farmacologia , Adulto , Neoplasias da Mama/patologia , Neoplasias da Mama/fisiopatologia , Cromatina/fisiologia , Metilação de DNA , Disruptores Endócrinos/metabolismo , Disruptores Endócrinos/uso terapêutico , Feminino , Humanos , Pessoa de Meia-Idade , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo
15.
Sensors (Basel) ; 21(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922528

RESUMO

The feasibility and usefulness of frequency domain fusion of data from multiple vibration sensors installed on typical industrial rotating machines, based on coherent composite spectrum (CCS) as well as poly-coherent composite spectrum (pCCS) techniques, have been well-iterated by earlier studies. However, all previous endeavours have been limited to rotor faults, thereby raising questions about the proficiency of the approach for classifying faults related to other critical rotating machine components such as gearboxes. Besides the restriction in scope of the founding CCS and pCCS studies on rotor-related faults, their diagnosis approach was manually implemented, which could be unrealistic when faced with routine condition monitoring of multi-component industrial rotating machines, which often entails high-frequency sampling at multiple locations. In order to alleviate these challenges, this paper introduced an automated framework that encompassed feature generation through CCS, data dimensionality reduction through principal component analysis (PCA), and faults classification using artificial neural network (ANN). The outcomes of the automated approach are a set of visualised decision maps representing individually simulated scenarios, which simplifies and illustrates the decision rules of the faults characterisation framework. Additionally, the proposed approach minimises diagnosis-related downtime by allowing asset operators to easily identify anomalies at their incipient stages without necessarily possessing vibration monitoring expertise. Building upon the encouraging results obtained from the preceding part of this approach that was limited to well-known rotor-related faults, the proposed framework was significantly extended to include experimental and open-source gear fault data. The results show that in addition to early established rotor-related faults classification, the approach described here can also effectively and automatically classify gearbox faults, thereby improving the robustness.

16.
Front Neurosci ; 15: 642745, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776640

RESUMO

Autism spectrum disorders (ASDs) are a spectrum of neurodevelopmental disorders characterized by impaired social interaction and communication, as well as stereotyped and repetitive behaviors. ASDs affect nearly 2% of the United States child population and the worldwide prevalence has dramatically increased in recent years. The etiology is not clear but ASD is thought to be caused by a combination of intrinsic and extrinsic factors. Circadian rhythms are the ∼24 h rhythms driven by the endogenous biological clock, and they are found in a variety of physiological processes. Growing evidence from basic and clinical studies suggest that the dysfunction of the circadian timing system may be associated with ASD and its pathogenesis. Here we review the findings that link circadian dysfunctions to ASD in both experimental and clinical studies. We first introduce the organization of the circadian system and ASD. Next, we review physiological indicators of circadian rhythms that are found disrupted in ASD individuals, including sleep-wake cycles, melatonin, cortisol, and serotonin. Finally, we review evidence in epidemiology, human genetics, and biochemistry that indicates underlying associations between circadian regulation and the pathogenesis of ASD. In conclusion, we propose that understanding the functional importance of the circadian clock in normal and aberrant neurodevelopmental processes may provide a novel perspective to tackle ASD, and clinical treatments for ASD individuals should comprise an integrative approach considering the dynamics of daily rhythms in physical, mental, and social processes.

17.
Cell Signal ; 73: 109689, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32535199

RESUMO

Dysregulated protein synthesis is frequently involved in oncogenesis and cancer progression. Translation initiation is thought to be the rate-limiting step in protein synthesis, and the mRNA 5' cap-binding protein eukaryotic translation initiation factor 4E (eIF4E) is a pivotal factor that initiates translation. The activities of eIF4E are regulated at multiple levels, one of which is through its phosphorylation at Serine 209 by the mitogen-activated protein kinase-interacting kinases (MNKs, including MNK1 and MNK2). Benefiting from novel mouse genetic tools and pharmacological MNK inhibitors, our understanding of a role for eIF4E phosphorylation in tumor biology and cancer therapy has greatly evolved in recent years. Importantly, recent studies have found that the level of eIF4E phosphorylation is frequently upregulated in a wide variety of human cancer types, and phosphorylation of eIF4E drives a number of important processes in cancer biology, including cell transformation, proliferation, apoptosis, metastasis and angiogenesis. The MNK-eIF4E axis is being assessed as a therapeutic target either alone or in combination with other therapies in different cancer models. As novel MNK inhibitors are being developed, experimental studies bring new hope to cure human cancers that are not responsive to traditional therapies. Herein we review recent progress on our understanding of a mechanistic role for phosphorylation of eIF4E in cancer biology and therapy.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Neoplasias/metabolismo , Humanos
18.
Sleep ; 43(2)2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31553042

RESUMO

Sleep and sleep loss are affecting protein synthesis in the brain, but the contribution of translational control to wakefulness and sleep regulation remains poorly understood. Here, we studied the role of two suppressors of protein synthesis, the eukaryotic translation initiation factor 4E-binding proteins 1 and 2 (4E-BP1 and 4E-BP2), in sleep architecture and electroencephalographic (EEG) activity as well as in the EEG and molecular responses to acute sleep loss. The EEG of mice mutant for the genes encoding 4E-BP1 or 4E-BP2 (Eif4ebp1 and Eif4ebp2 knockout [KO] mice) was recorded under undisturbed conditions and following a 6-hour sleep deprivation (SD). The effect of SD on the expression of genes known to respond to SD was also measured in the prefrontal cortex of Eif4ebp1 and Eif4ebp2 KO mice. Eif4ebp1 KO mice differed from wild-type mice in parameters of wakefulness and sleep quantity and quality, and more subtly in the gene expression response to SD. For instance, Eif4ebp1 KO mice spent more time in slow-wave sleep (SWS) and showed altered baseline 24-h time courses of SWS delta (1-4 Hz) activity and sigma (10-13 Hz) activity. Eif4ebp2 KO mice differed from wild-type mice only for wakefulness and sleep quality, expressing changes in EEG spectral activity generally revealed during and after SD. These findings suggest different roles of effectors of translational control in the regulation of wakefulness and sleep and of synchronized cortical activity.


Assuntos
Fosfoproteínas , Vigília , Animais , Proteínas de Transporte , Eletroencefalografia , Fatores de Iniciação em Eucariotos/metabolismo , Camundongos , Camundongos Knockout , Fosfoproteínas/metabolismo , Sono/genética
19.
Neuron ; 104(4): 724-735.e6, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31522764

RESUMO

The integrated stress response (ISR) is activated in response to diverse stress stimuli to maintain homeostasis in neurons. Central to this process is the phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α). Here, we report a critical role for ISR in regulating the mammalian circadian clock. The eIF2α kinase GCN2 rhythmically phosphorylates eIF2α in the suprachiasmatic circadian clock. Increased eIF2α phosphorylation shortens the circadian period in both fibroblasts and mice, whereas reduced eIF2α phosphorylation lengthens the circadian period and impairs circadian rhythmicity in animals. Mechanistically, phosphorylation of eIF2α promotes mRNA translation of Atf4. ATF4 binding motifs are identified in multiple clock genes, including Per2, Per3, Cry1, Cry2, and Clock. ATF4 binds to the TTGCAGCA motif in the Per2 promoter and activates its transcription. Together, these results demonstrate a significant role for ISR in circadian physiology and provide a potential link between dysregulated ISR and circadian dysfunction in brain diseases.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Relógios Circadianos/fisiologia , Regulação da Expressão Gênica/fisiologia , Homeostase/fisiologia , Proteínas Circadianas Period/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Fisiológico/fisiologia
20.
Front Genet ; 9: 367, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30250482

RESUMO

Almost all cellular processes are regulated by the approximately 24 h rhythms that are endogenously driven by the circadian clock. mRNA translation, as the most energy consuming step in gene expression, is temporally controlled by circadian rhythms. Recent research has uncovered key mechanisms of translational control that are orchestrated by circadian rhythmicity and in turn feed back to the clock machinery to maintain robustness and accuracy of circadian timekeeping. Here I review recent progress in our understanding of translation control mechanisms in the circadian clock, focusing on a role for the mammalian/mechanistic target of rapamycin (mTOR) signaling pathway in modulating entrainment, synchronization and autonomous oscillation of circadian clocks. I also discuss the relevance of circadian mTOR functions in disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...