Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36984369

RESUMO

Fatigue cracking is a common form of flexible pavement distress, which generally starts and spreads through bitumen. To address this issue, self-healing elastomer (SHE) modified bitumens were elaborated to assess whether these novel materials can overcome the neat asphalt (NA) fatigue performance and whether the current failure definition, failure criterion, and fatigue-restoration criteria can fit their performance. All bitumens were subjected to short-term and long-term aging. Linear amplitude sweep (LAS) test, LAS with rest period (LASH), and simplified viscoelastic-continuum-damage (S-VECD) model were utilized to appraise the behavior of the mentioned bitumens. The results showed that maximum stored pseudo-strain energy (PSE) and tau (τ) × N (number of loading cycles) failure definitions exhibited high efficiency to accommodate the fatigue life of NA and SHE-modified bitumens. Both failure criteria identified that SHE-modified bitumen (containing 1% of SHE) showed the highest increment of fatigue performance (67.1%) concerning NA. The failure criterion based on total released PSE, in terms of the area under the released PSE curve, was the only failure concept with high efficiency (R2 up to 0.999) to predict asphalt binder fatigue life. As well, the current framework to evaluate bitumen self-restoration failed to fully accommodate asphalt binder behavior, because bitumen with higher restoration could not exhibit greater fatigue performance. Consequently, a new procedure to assess this property including fatigue behavior was proposed, showing consistent results, and confirming that SHE-modified bitumen (containing 1% of SHE) exhibited the highest increment of fatigue performance (154.02%) after application of the rest period. Hence, the optimum SHE content in NA was 1%. Furthermore, it was found that a greater number of loading cycles to failure (Nf) did not ensure better fatigue performance and stored PSE influenced the bitumen fatigue behavior.

2.
Materials (Basel) ; 14(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34443274

RESUMO

Spherically encapsulated phase change materials (PCMs) are extensively incorporated into matrix material to form composite latent heat storage system for the purposes of saving energy, reducing PCM cost and decreasing space occupation. Although the melting of PCM sphere has been studied comprehensively by experimental and numerical methods, it is still challenging to quantitatively depict the contribution of complex natural convection (NC) to the melting process in a practically simple and acceptable way. To tackle this, a new effective thermal conductivity model is proposed in this work by focusing on the total melting time (TMT) of PCM, instead of tracking the complex evolution of solid-liquid interface. Firstly, the experiment and finite element simulation of the constrained and unconstrained meltings of paraffin sphere are conducted to provide a deep understanding of the NC-driven melting mechanism and exhibit the difference of melting process. Then the dependence of NC on the particle size and heating temperature is numerically investigated for the unconstrained melting which is closer to the real-life physics than the constrained melting. Subsequently, the contribution of NC to the TMT is approximately represented by a simple effective thermal conductivity correlation, through which the melting process of PCM is simplified to involve heat conduction only. The effectiveness of the equivalent thermal conductivity model is demonstrated by rigorous numerical analysis involving NC-driven melting. By addressing the TMT, the present correlation thoroughly avoids tracking the complex evolution of melting front and would bring great convenience to engineering applications.

3.
Materials (Basel) ; 13(13)2020 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-32605130

RESUMO

Mixed recycled aggregates (MRA) from construction and demolition waste (CDW) with high-purity and environmental performance are required for highway construction application in base layer and precast concrete curbs. The main problematic constituents that reduce the quality level of the recycled aggregates applications are brick components, flaky particles, and attached mortar, which make up a large proportion of CDW in some countries. This paper studies the potential of brick separation technology based on shape characteristics in order to increase the recycled concrete aggregates (RCA) purity for MRA quality improvement. MRA after purification was also processed with surface treatment experiment by rotating in a cylinder to improve the shape characteristics and to remove the attached mortar. The purity, strength property, densities, water absorption ratio, shape index, and mortar removal ratio of MRA were studied before and after the use of the brick separation and surface treatment proposed in this study. Finally, the recycled aggregates upgradation solution was adopted in a stationary recycling plant designed for a length of 113 km highway construction. The properties of CDW mixed concrete for precast curbs manufacturing were conducted. The results indicate that problematic fractions (brick components, particle shape, and surface weakness) in the MRA were significantly reduced by using brick separation and surface treatment solution. Above all, it is very important that the proposed brick separation method was verified to be practically adopted in CDW recycling plant for highway base layer construction and concrete curbs manufacturing at a low cost.

4.
Ecotoxicol Environ Saf ; 194: 110435, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32169728

RESUMO

Soil salinization is one of most crucial environmental problems around the world and negatively affects plant growth and production. Carex rigescens is a turfgrass with favorable stress tolerance and great application prospect in salinity soil remediation and utilization; however, the molecular mechanisms behind its salt stress response are unknown. We performed a time-course transcriptome analysis between salt tolerant 'Huanghua' (HH) and salt sensitive 'Beijing' (BJ) genotypes. Physiological changes within 24 h were observed, with the HH genotype exhibiting increased salt tolerance compared to BJ. 5764 and 10752 differentially expressed genes were approved by transcriptome in BJ and HH genotype, respectively, and dynamic analysis showed a discrepant profile between two genotypes. In the BJ genotype, genes related to carbohydrate metabolism and stress response were more active and ABA signal transduction pathway might play a more important role in salt stress tolerance than in HH genotype. In the HH genotype, unique increases in the regulatory network of transcription factors, hormone signal transduction, and oxidation-reduction processes were observed. Moreover, trehalose and pectin biosynthesis and chitin catabolic related genes were specifically involved in the HH genotype, which may have contributed to salt tolerance. Moreover, some candidate genes like mannan endo-1,4-beta-mannosidase and EG45-like domain-containing protein are highlighted for future research about salt stress resistance in C. rigescens and other plant species. Our study revealed unique salt adaptation and resistance characteristics of two C. rigescens genotypes and these findings could help to enrich the currently available knowledge and clarify the detailed salt stress regulatory mechanisms in C. rigescens and other plants.


Assuntos
Carex (Planta)/genética , Transcriptoma , Pequim , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo , Salinidade , Tolerância ao Sal , Estresse Fisiológico/genética , Fatores de Transcrição/genética
5.
Plant Cell Rep ; 38(12): 1501-1514, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31473792

RESUMO

KEY MESSAGE: CrCOMT, a COMT gene in Carex rigescens, was verified to enhance salt stress tolerance in transgenic Arabidopsis. High salinity severely restricts plant growth and development while melatonin can alleviate salt damage. Caffeic acid O-methyltransferase (COMT) plays an important role in regulating plant growth, development, and stress responses. COMT could also participate in melatonin biosynthesis. The objective of this study was to identify CrCOMT from Carex rigescens (Franch.) V. Krecz, a stress-tolerant grass species with a widespread distribution in north China, and to determine its physiological functions and regulatory mechanisms that impart tolerance to salt stress. The results showed that the transcription of CrCOMT exhibited different expression patterns under salt, drought, and ABA treatments. Transgenic Arabidopsis with the overexpression of CrCOMT exhibited improved growth and physiological performance under salt stress, such as higher lateral root numbers, proline level, and chlorophyll content, than in the wild type (WT). Overexpression of CrCOMT also increased dehydration tolerance in Arabidopsis. The transcription of salt response genes was more highly activated in transgenic plants than in the WT under salt stress conditions. In addition, the melatonin content in transgenic plants was higher than that in the WT after stress treatment. Taken together, our results indicated that CrCOMT may positively regulate stress responses and melatonin synthesis under salt stress.


Assuntos
Arabidopsis/metabolismo , Carex (Planta)/metabolismo , Melatonina/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Carex (Planta)/genética , Regulação da Expressão Gênica de Plantas , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tolerância ao Sal
6.
Materials (Basel) ; 12(12)2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31200453

RESUMO

Cool coatings are typically used to address high-temperature problems with asphalt pavements, such as rutting. However, research on the effect of the coating structure on the cooling performance remains a major challenge. In this paper, we used a three-layer cool coating (TLCC) to experimentally investigate the effects of the reflective layer, the emissive layer, and the thermal insulation layer on the cooling effect using a self-developed cooling effect evaluation device (CEED). Based on the test results, we further established temperature fields inside uncoated and coated samples, which were used to study how the TLCC affects the inner temperature field. Our results showed that the reflective layer was the main parameter influencing the cooling effect (8.18 °C), while the other two layers were secondary factors that further improved the cooling effect to 13.25 °C. A comparison of the temperature fields showed that the TLCC could effectively change the internal temperature field compared with the uncoated sample, for example, by reducing the maximum temperature inside, whose corresponding position was also deeper. As the depth increased, the cooling effect of the TLCC first increased and then decreased slowly. The results emphasize the importance of considering the effect of the coating structure on the cooling performance. This study provides a reference for effectively alleviating high-temperature distresses on asphalt pavement, which is conducive to the sustainable development of pavements.

7.
Waste Manag ; 85: 396-404, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30803594

RESUMO

The quality of recycled aggregates from construction and demolition waste (CDW) is strictly related to the content of porous and low strength phases and is specifically related to the high content of brick particles, despite representing approximately 50 wt.% of the total recycled aggregates. This paper focus on air jigging separation studies for removing brick particles from recycled construction and demolition waste aggregates. The operational parameters were achieved by studying the aggregate movement trajectories based on the small specific density differences of 2.52 g/cm3 and 1.97 g/cm3. Separation tests were conducted with a binary mixture of concrete and brick particles ranging from 5 to 10 mm for three operational parameters. The attained results confirmed that the brick fraction increases the water absorption and compromises the consistency and strength of the recycled aggregates. The proposed air jigging separation method was effective at reducing brick particle content and producing significant recycled concrete aggregates with a purity of 95 wt.%, paving the way for greater use of recycled aggregates in high grade applications, such as concrete and pavement layers.


Assuntos
Materiais de Construção , Gerenciamento de Resíduos , Resíduos Industriais , Porosidade , Reciclagem
8.
Ecotoxicol Environ Saf ; 168: 127-137, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30384160

RESUMO

Carex rigescens is an ornamental turfgrass in northern China which has a relatively low maintenance cost and robust tolerance to many adverse environmental conditions, so it could be considered a new material for researching into plant stress resistance. However, suitable reference genes are vacant for obtaining reliable results in quantitative real-time PCR (qRT-PCR) analysis of C. rigescens in adversity research. In this study, we tested the expression stability of nine potential reference genes in leaves and roots under five different abiotic stress conditions, including cold, salt, heat, osmotic and cadmium (Cd). We then selected the best reference genes according to the analysis results calculated by three algorithmic programs (geNorm, NormFinder and BestKeeper) and used the RankAggreg package to merge the outputted data. The results showed that combinations of at least two reference genes should be used for reliable normalization except in heat-treated root samples, which require three reference genes. eIF-4α, GADPH, SAND and PEPKR1 and their combination were found to be the most stably expressed reference genes, while SAM, TUA-α and UPL7 were the three least stable reference genes among most of experimental samples. In addition, five stress-induced genes (Cu-Zn SOD, P5CS, LEA, GST, and APX) were chosen to verify the stability of the selected reference genes in various tissues and under various stress conditions. The results of this study will provide an important fundamental basis both for gene expression verification for transcriptomic and proteomic analyses and for gene expression analysis for future gene function research in C. rigescens.


Assuntos
Cyperaceae/genética , Genes de Plantas , Folhas de Planta/genética , Raízes de Plantas/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteômica , Reação em Cadeia da Polimerase em Tempo Real , Seleção Genética , Transcriptoma
9.
J Plant Physiol ; 229: 77-88, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30048907

RESUMO

Salt stress is a major abiotic stress threatening plant growth and development throughout the world. In this study, we investigated the salt stress adaptation mechanism of Carex rigescens (Franch.) V. Krecz, a stress-tolerant turfgrass species with a wide distribution in northern China. Specifically, we analyzed the growth, physiology, and transcript expression patterns of two C. rigescens genotypes (Huanghua and Lvping No.1) exposed to salt stress. Results show that Huanghua demonstrated better growth performance, and higher turf quality (TQ), photochemical efficiency (Fv/Fm), relative water content (RWC), proline content, and lower relative electrolyte leakage (REL) during seven days of salt treatment compared to Lvping No.1, suggesting that Huanghua is more salt tolerant. Significant differences in reactive oxygen species (ROS), Malondialdehyde (MDA), melatonin, non-enzymatic antioxidants, lignin, and flavonoid content, as well as in antioxidant activity between Huanghua and Lvping No.1 after salt stress indicate the diverse regulation involved in salt stress adaptation in C. rigescens. These results, combined with those of the transcript expression pattern of involved genes, suggest that Huanghua is more active and efficient in ROS scavenging, Ca2+ binding, and its phytohormone response than Lvping No.1. Meanwhile, Lvping No.1 showed relatively higher phenylpropanoid synthesis, using flavonoid and lignin as supplements for the inadequate ROS-scavenging capacity and the development of vascular tissues, respectively. These performances illustrate the differences between the two genotypes in multifaceted and sophisticated actions contributing to the tolerance mechanism of salt stress in C. rigescens. In addition, the significantly higher content of melatonin and the rapid induction of Caffeic acid O-methyltransferase (COMT) highlight the role of melatonin in the salt stress response in Huanghua. The results of our study expand existing knowledge of the complexity of the salt stress response involving the antioxidant system, Ca2+ signaling, phytohormone response signaling, and phenylpropanoid pathways. It also provides a basis for further study of the underlying mechanism of salt tolerance in C. rigescens and other plant species.


Assuntos
Carex (Planta)/metabolismo , Carex (Planta)/efeitos dos fármacos , Carex (Planta)/fisiologia , Flavonoides/metabolismo , Lignina/metabolismo , Malondialdeído/metabolismo , Melatonina/metabolismo , Metiltransferases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal , Cloreto de Sódio/farmacologia
10.
Opt Express ; 22(20): 23795-800, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25321958

RESUMO

We demonstrate a comparative investigation on Er,Pr:GYSGG and GYSGG/Er,Pr:GYSGG composite crystals at 2.79 µm. Simulating results show the highest temperatures are 369 K and 318 K, respectively. A maximum output power of 825 mW with slope efficiency of 19.2% and maximum laser energy of 3.65 mJ with slope efficiency of 22.7% are obtained in the GYSGG/Er,Pr:GYSGG composite crystal, which have an obvious improvement than those of Er,Pr:GYSGG crystal. The thermal focal lengths are respectively 41 and 62 mm when the pump power is 2.5 W. All these results indicate that the GYSGG/Er,Pr:GYSGG composite crystal has great advantages in reducing the influence of thermal effects and improving laser performances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...