Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 44(7): 4039-4051, 2023 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-37438302

RESUMO

In order to understand the occurrence of PAHs in soil and crops, the enrichment capacity of different crops for PAHs, and the distribution characteristics of PAHs in different parts of crops, the crops and soil planted in the farmland around Urumqi were studied as examples. Samples were collected in the farmland gathering area in the suburb of Urumqi in July 2021. A total of 100 crop samples were collected, including 21 crop species and 45 surface soil samples. The results showed that 16 types of PAHs were detected in the soil and crops. The total concentration of PAHs in farmland soil ranged from 19.06 to 1870.86 µg·kg-1, and the average concentration was 127.40 µg·kg-1. Seven carcinogenic PAHs accounted for 42.85%-79.20% of the 16 types of PAHs, among which BaP was the main pollutant in the soil. Through the characteristic ratio method, it was found that the main sources of PAHs in the soil were biomass and coal combustion. Total PAHs in crops ranged from 1.86 µg·kg-1 to 974.05 µg·kg-1, with an average of 303.30 µg·kg-1. Different crops had different enrichment capacities for PAHs. Among the 21 crops sampled, the accumulative content of PAHs in pumpkin was the highest (431.75 µg·kg-1). In leaf vegetable crops, the content of PAHs in leaves was higher than that in roots and fruits. In fruit and vegetable crops, the PAH content in fruit was higher than that in the root or leaf. There was a significant correlation between high cyclic PAHs in soil and PAHs in plant leaves. The health risk assessment of PAHs in crops showed that dietary intake had potential carcinogenic risk and even had high carcinogenic risk in adult male and female groups, which requires further attention.


Assuntos
Produtos Agrícolas , Hidrocarbonetos Policíclicos Aromáticos , Adulto , Humanos , Fazendas , Medição de Risco , Verduras , Carcinógenos , Solo
2.
Sci Rep ; 12(1): 21448, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509833

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) will be ingested by people through different ways to threaten their health during play, so the environmental quality of the park directly affects the health of tourists and residents. Using eight typical parks in Urumqi in Northwest China as the study area, we used GC-MS to detect the PAHs content in the park surface soil and 10 common plants in the park in different seasons. The results showed that the content of PAHs in park soil in the summer was 5-6 times that in the winter, and the monomer PAHs in some park soil sampling points were higher than the soil pollution risk screening value. And the contamination level at these sampling sites was also higher compared to other sampling sites. In summer, the plants with high PAHs content in leaves are short herbs, while in winter, they are tall arbors. The PAHs of the park soil are mainly composed of high-cyclic aromatic hydrocarbons, and are mainly of traffic origin. The proportion of low-ring aromatic hydrocarbons in the winter was significantly higher than that in the summer. The source of PAHs in plants in summer is similar to that in soil, but the source of PAHs in plants in winter is more complex. The toxicity equivalent concentration method values of soil PAHs in South Park, Zhiwu Park, Shihua Park and Toutunhe Park were higher than that in other parks. The lifetime carcinogenic risk (ILCRs) values of some sampling points in these four parks in the summer were relatively high. The average ILCRs of adults and children in all parks reached a low-risk level in summer. The carcinogenic risk in children is much higher than that of adults.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Adulto , Criança , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo/química , Poluentes do Solo/análise , Monitoramento Ambiental , Medição de Risco , Carcinógenos/análise , China
3.
Genes (Basel) ; 13(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36292652

RESUMO

The content of metal ions in fruits is inseparable from plant intake of trace elements and health effects in the human body. To understand metal ion content in the fruit and pericarp of melon (Cucumis melo L.) and the candidate genes responsible for controlling this process, we analyzed the metal ion content in distinct parts of melon fruit and pericarp and performed RNA-seq. The results showed that the content of metal ions in melon fruit tissue was significantly higher than that in the pericarp. Based on transcriptome expression profiling, we found that the fruit and pericarp contained elevated levels of DEGs. GO functional annotations included cell surface receptor signaling, signal transduction, organic substance metabolism, carbohydrate derivative binding, and hormone-mediated signaling pathways. KEGG pathways included pectate lyase, pentose and glucuronate interconversions, H+-transporting ATPase, oxidative phosphorylation, plant hormone signal transduction, and MAPK signaling pathways. We also analyzed the expression patterns of genes and transcription factors involved in hormone biosynthesis and signal transduction. Using weighted gene co-expression network analysis (WGCNA), a co-expression network was constructed to identify a specific module that was significantly correlated with the content of metal ions in melon, after which the gene expression in the module was measured. Connectivity and qRT-PCR identified five candidate melon genes, LOC103501427, LOC103501539, LOC103503694, LOC103504124, and LOC107990281, associated with metal ion content. This study provides a theoretical basis for further understanding the molecular mechanism of heavy metal ion content in melon fruit and peel and provides new genetic resources for the study of heavy metal ion content in plant tissues.


Assuntos
Cucumis melo , Cucurbitaceae , Metais Pesados , Oligoelementos , Humanos , Cucumis melo/genética , Cucurbitaceae/genética , Reguladores de Crescimento de Plantas/metabolismo , Oligoelementos/metabolismo , Metais Pesados/toxicidade , Metais Pesados/metabolismo , Fatores de Transcrição/metabolismo , Hormônios , Pentoses/metabolismo , Glucuronatos/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Receptores de Superfície Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...