Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(6): 1843-1850, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38316029

RESUMO

The penetrating growth of Li into the inorganic solid-state electrolyte (SSE) is one key factor limiting its practical application. Research to understand the underlying mechanism of Li penetration has been ongoing for years and is continuing. Here, we report an in situ scanning electron microscopy methodology to investigate the dynamic behaviors of isolated Li filaments in the garnet SSE under practical cycling conditions. We find that the filaments tend to grow in the SSE, while surprisingly, those filaments can self-dissolve with a decrease in the current density without a reversal of the current direction. We further build a coupled electro-chemo-mechanical model to assess the interplay between electrochemistry and mechanics during the dynamic evolution of filaments. We reveal that filament growth is strongly regulated by the competition between the electrochemical driving force and mechanical resistive force. The numerical results provide rational guidance for the design of solid-state batteries with excellent properties.

2.
ACS Appl Mater Interfaces ; 15(5): 6666-6675, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36705679

RESUMO

Lithium (Li) metal is a promising candidate for next-generation anode materials with high energy densities. However, Li dissolution/deposition processes are limited at the upper surface in contact with the electrolyte, which brings a locally high current density and then results in dendritic Li growth. This restraint of the local surface reaction during cycling has not been solved by commonly used modification strategies. In this study, a three-dimensional (3D) Li+ conductive skeleton is activated from atomic layer deposition (ALD) coating Li3PO4 (LPO) on the surface of the Ni foam (LPNF). Then, the skeleton is efficiently constructed in the Li metal anode by the lower-temperature Li infusion. Ionic conductor LPO layers and electronic conductor Ni fibers supply charge transport channels between the electrolyte and the internal Li. The mixed conductive network realizes holistic charge transfer, which is proved by in situ scanning electron microscopy experiments. In virtue of dispersive dissolution/deposition and optimized electrochemical kinetics brought by a Li+ conductive network, the composited Li electrode presents an excellent symmetric battery cycling stability (over 1200 h) and enhanced rate performances (stable cycling even at 10.0 mA cm-2). When matching with a LiCoO2 (LCO) cathode, LCO||Li@LPNF full batteries exhibit a capacity retention of 80.8% over 250 cycles. During cycling, there was no evidence of dendrite growth and the remaining Li in the composited anode showed a smooth, compact, and well-combined condition with LPNF. Through constructing a 3D Li+ conductive network, the composited Li metal anode breaks through the limit of the local surface reaction; this work proposes a novel insight of realizing holistic charging/discharging for the dendrite-free Li metal anode.

3.
ACS Appl Mater Interfaces ; 14(22): 25524-25533, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35622965

RESUMO

Although the rapid development of electrical energy storage devices has slowed down environmental pollution, their large-scale application has posed huge challenges to battery-related mineral resources; thus, extending the lifespan of high-voltage lithium cobalt oxide (LCO) is of great importance. Surface oxide coating is considered as the most common low-cost modification method for addressing unstable cycling performance. However, studies have shown that the oxide layer would further react with an electrolyte, while the investigation on the corresponding component evolution is lacking. Herein, a typical example utilizing the above reaction to realize surface reconstruction is presented. Applying atomic layer deposition (ALD), originally, an ultrathin Al2O3 layer is coated on the LCO surface; however, this coating layer has undergone reconstruction after reacting with electrolyte decomposition products during the cycling. Compared with simple coating, the in situ formed Li3AlF6 layer has a tighter binding to the LCO surface while possessing good Li+ conductivity and electrochemical stability. In addition, the unique properties of the ALD technology allow us to achieve ultrathin (1 nm) and conformal coating, which is beneficial for electronic conductivity and cycling stability. Furthermore, the surface phase transition layer stripping failure mechanism has first been revealed to explain the loss of Co and O, while the reconstructed Li3AlF6 effectively suppresses the surface stripping. Thus, excellent high-voltage performance has been realized (an 89% capacity retention after 1000 cycles at 4.5 V and an 88% capacity retention after 200 cycles at 4.6 V). This work casts a new understanding on the surface reconstruction of the oxide coating layer, which is also significant for other electrode materials' modification.

4.
RSC Adv ; 9(8): 4609-4615, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35520172

RESUMO

With more and more applications, the mechanical strength of graphene paper (GP) has attracted significant attention in recent years. In this report, GPs were prepared by flow-induced filtration of electrochemical exfoliated graphene sheets. By adjusting the concentration of solution, we found graphene sheets fabricated in 0.1 M K2SO4 have the thinnest average thickness. And by uniaxial in-plane tensile tests operated on a self-developed in situ scanning electron microscopy (SEM) tensile stage, the corresponding GP has the best fracture strength of 192 MPa. This is due to that the thickness decrease of exfoliated graphene will increase the quantity of interlayer crosslinks, thus improving the mechanical properties of GPs. This research may open a new way to obtain high-strength GPs for applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...