Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 9(1): 150-161, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36538577

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) is commonly implicated in hospital-acquired infections where its capacity to form biofilms on a variety of surfaces and the resulting enhanced antibiotic resistance seriously limit treatment choices. Because surface attachment sensitizes P. aeruginosa to quorum sensing (QS) and induces virulence through both chemical and mechanical cues, we investigate the effect of surface properties through spatially patterned mucin, combined with sub-inhibitory concentrations of tobramycin on QS and virulence factors in both mucoid and non-mucoid P. aeruginosa strains using multi-modal chemical imaging combining confocal Raman microscopy and matrix-assisted laser desorption/ionization-mass spectrometry. Samples comprise surface-adherent static biofilms at a solid-water interface, supernatant liquid, and pellicle biofilms at an air-water interface at various time points. Although the presence of a sub-inhibitory concentration of tobramycin in the supernatant retards growth and development of static biofilms independent of strain and surface mucin patterning, we observe clear differences in the behavior of mucoid and non-mucoid strains. Quinolone signals in a non-mucoid strain are induced earlier and are influenced by mucin surface patterning to a degree not exhibited in the mucoid strain. Additionally, phenazine virulence factors, such as pyocyanin, are observed in the pellicle biofilms of both mucoid and non-mucoid strains but are not detected in the static biofilms from either strain, highlighting the differences in stress response between pellicle and static biofilms. Differences between mucoid and non-mucoid strains are consistent with their strain-specific phenology, in which the mucoid strain develops highly protected biofilms.


Assuntos
Antibacterianos , Quinolonas , Antibacterianos/farmacologia , Pseudomonas aeruginosa , Quinolonas/farmacologia , Mucinas , Biofilmes , Tobramicina/farmacologia , Fatores de Virulência
2.
Anal Chem ; 93(43): 14481-14488, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34661405

RESUMO

Pseudomonas aeruginosa produces a number of phenazine metabolites, including pyocyanin (PYO), phenazine-1-carboxamide (PCN), and phenazine-1-carboxylic acid (PCA). Among these, PYO has been most widely studied as a biomarker of P. aeruginosa infection. However, despite its broad-spectrum antibiotic properties and its role as a precursor in the biosynthetic route leading to other secondary phenazines, PCA has attracted less attention, partially due to its relatively low concentration and interference from other highly abundant phenazines. This challenge is addressed here by constructing a hierarchically organized nanostructure consisting of a pH-responsive block copolymer (BCP) membrane with nanopore electrode arrays (NEAs) filled with gold nanoparticles (AuNPs) to separate and detect PCA in bacterial environments. The BCP@NEA strategy is designed such that adjusting the pH of the bacterial medium to 4.5, which is above the pKa of PCA but below the pKa of PYO and PCN, ensures that PCA is negatively charged and can be selectively transported across the BCP membrane. At pH 4.5, only PCA is transported into the AuNP-filled NEAs, while PYO and PCN are blocked. Structural characterization illustrates the rigorous spatial segregation of the AuNPs in the NEA nanopore volume, allowing PCA secreted from P. aeruginosa to be quantitatively determined as a function of incubation time using square-wave voltammetry and surface-enhanced Raman spectroscopy. The strategy proposed in this study can be extended by changing the nature of the hydrophilic block and subsequently applied to detect other redox-active metabolites at a low concentration in complex biological samples and, thus, help understand metabolism in microbial communities.


Assuntos
Nanopartículas Metálicas , Nanoporos , Eletrodos , Ouro , Fenazinas , Pseudomonas aeruginosa , Piocianina
3.
J Chem Phys ; 154(20): 204201, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34241187

RESUMO

Pseudomonas aeruginosa is an opportunistic human pathogen implicated in both acute and chronic diseases, which resists antibiotic treatment, in part by forming physical and chemical barriers such as biofilms. Here, we explore the use of confocal Raman imaging to characterize the three-dimensional (3D) spatial distribution of alkyl quinolones (AQs) in P. aeruginosa biofilms by reconstructing depth profiles from hyperspectral Raman data. AQs are important to quorum sensing (QS), virulence, and other actions of P. aeruginosa. Three-dimensional distributions of three different AQs (PQS, HQNO, and HHQ) were observed to have a significant depth, suggesting 3D anisotropic shapes-sheet-like rectangular solids for HQNO and extended cylinders for PQS. Similar to observations from 2D imaging studies, spectral features characteristic of AQs (HQNO or PQS) and the amide I vibration from peptide-containing species were found to correlate with the PQS cylinders typically located at the tips of the HQNO rectangular solids. In the QS-deficient mutant lasIrhlI, a small globular component was observed, whose highly localized nature and similarity in size to a P. aeruginosa cell suggest that the feature arises from HHQ localized in the vicinity of the cell from which it was secreted. The difference in the shapes and sizes of the aggregates of the three AQs in wild-type and mutant P. aeruginosa is likely related to the difference in the cellular response to growth conditions, environmental stress, metabolic levels, or other structural and biochemical variations inside biofilms. This study provides a new route to characterizing the 3D structure of biofilms and shows the potential of confocal Raman imaging to elucidate the nature of heterogeneous biofilms in all three spatial dimensions. These capabilities should be applicable as a tool in studies of infectious diseases.


Assuntos
Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Quinolonas/farmacologia , Biofilmes/crescimento & desenvolvimento , Microscopia Confocal , Quinolonas/química , Análise Espectral Raman
4.
ACS Infect Dis ; 7(3): 598-607, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33620198

RESUMO

Quinolone, pyocyanin, and rhamnolipid production were studied in Pseudomonas aeruginosa by spatially patterning mucin, a glycoprotein important to infection of lung epithelia. Mass spectrometric imaging and confocal Raman microscopy are combined to probe P. aeruginosa biofilms from mucoid and nonmucoid strains grown on lithographically defined patterns. Quinolone signatures from biofilms on patterned vs unpatterned and mucin vs mercaptoundecanoic acid (MUA) surfaces were compared. Microbial attachment is accompanied by secretion of 2-alkyl-4-quinolones as well as rhamnolipids from the mucoid and nonmucoid strains. Pyocyanin was also detected both in the biofilm and in the supernatant in the mucoid strain only. Significant differences in the spatiotemporal distributions of secreted factors are observed between strains and among different surface patterning conditions. The mucoid strain is sensitive to composition and patterning while the nonmucoid strain is not, and in promoting community development in the mucoid strain, nonpatterned surfaces are better than patterned, and mucin is better than MUA. Also, the mucoid strain secretes the virulence factor pyocyanin in a way that correlates with distress. A change in the relative abundance for two rhamnolipids is observed in the mucoid strain during exposure to mucin, whereas minimal variation is observed in the nonmucoid strain. Differences between mucoid and nonmucoid strains are consistent with their strain-specific phenology, in which the mucoid strain develops highly protected and withdrawn biofilms that achieve Pseudomonas quinolone signal production under limited conditions.


Assuntos
Pseudomonas aeruginosa , Piocianina , Biofilmes , Biopolímeros , Pulmão
5.
mSphere ; 5(4)2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699119

RESUMO

Pseudomonas aeruginosa is an opportunistic human pathogen important to diseases such as cystic fibrosis. P. aeruginosa has multiple quorum-sensing (QS) systems, one of which utilizes the signaling molecule 2-heptyl-3-hydroxy-4-quinolone (Pseudomonas quinolone signal [PQS]). Here, we use hyperspectral Raman imaging to elucidate the spatiotemporal PQS distributions that determine how P. aeruginosa regulates surface colonization and its response to both metabolic stress and competition from other bacterial strains. These chemical imaging experiments illustrate the strong link between environmental challenges, such as metabolic stress caused by nutritional limitations or the presence of another bacterial species, and PQS signaling. Metabolic stress elicits a complex response in which limited nutrients induce the bacteria to produce PQS earlier, but the bacteria may also pause PQS production entirely if the nutrient concentration is too low. Separately, coculturing P. aeruginosa in the proximity of another bacterial species, or its culture supernatant, results in earlier production of PQS. However, these differences in PQS appearance are not observed for all alkyl quinolones (AQs) measured; the spatiotemporal response of 2-heptyl-4-hydroxyquinoline N-oxide (HQNO) is highly uniform for most conditions. These insights on the spatiotemporal distributions of quinolones provide additional perspective on the behavior of P. aeruginosa in response to different environmental cues.IMPORTANCE Alkyl quinolones (AQs), including Pseudomonas quinolone signal (PQS), made by the opportunistic pathogen Pseudomonas aeruginosa have been associated with both population density and stress. The regulation of AQ production is known to be complex, and the stimuli that modulate AQ responses are not fully clear. Here, we have used hyperspectral Raman chemical imaging to examine the temporal and spatial profiles of AQs exhibited by P. aeruginosa under several potentially stressful conditions. We found that metabolic stress, effected by carbon limitation, or competition stress, effected by proximity to other species, resulted in accelerated PQS production. This competition effect did not require cell-to-cell interaction, as evidenced by the fact that the addition of supernatants from either Escherichia coli or Staphylococcus aureus led to early appearance of PQS. Lastly, the fact that these modulations were observed for PQS but not for all AQs suggests a high level of complexity in AQ regulation that remains to be discerned.


Assuntos
Pseudomonas aeruginosa/metabolismo , Quinolonas/metabolismo , Percepção de Quorum/fisiologia , Estresse Fisiológico , Escherichia coli/metabolismo , Interações Microbianas , Análise de Componente Principal , Transdução de Sinais , Análise Espaço-Temporal , Análise Espectral Raman
6.
Artigo em Inglês | MEDLINE | ID: mdl-33790492

RESUMO

Microbial community behavior is coupled to a set of genetically-regulated chemical signals that correlate with cell density - the quorum sensing (QS) system - and there is growing appreciation that the QS-regulated behavior of bacteria is chemically, spatially, and temporally complex. In addition, while it has been known for some time that different species use different QS networks, we are beginning to appreciate that different strains of the same bacterial species also differ in their QS networks. Here we combine mass spectrometric imaging (MSI) and confocal Raman microscopy (CRM) approaches to investigate co-cultures involving different strains (FRD1 and PAO1C) of the same species (Pseudomonas aeruginosa) as well as those involving different species (P. aeruginosa and E. coli). Combining MSI and CRM makes it possible to supersede the limits imposed by individual imaging approaches and enables the spatial mapping of individual bacterial species and their microbial products within a mixed bacterial community growing in situ on surfaces. MSI is used to delineate the secretion of a specific rhamnolipid surfactant as well as alkyl quinolone (AQ) messengers between FRD1 and PAO1C strains of P. aeruginosa, showing that the spatial distribution and production rate of AQ messengers in PAO1C far outstrips that of FRD1. In the case of multiple species, CRM is used to show that the prolific secretion of AQs by the PAO1C strain of P. aeruginosa is used to mediate its interaction with co-cultured E. coli.

7.
Microbiol Insights ; 11: 1178636118817738, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30573968

RESUMO

A cascade of events leads to the development of microbial biofilm communities that are thought to be responsible for over 80% of infections in humans. However, not all surface-growing bacteria reside in a stationary biofilm state. Here, we have employed confocal Raman microscopy to analyze and compare variations in the alkyl quinolone (AQ) family of molecules during the transition between surface-attached motile-swarming and stationary biofilm communities. The AQs have been established previously as important to Pseudomonas aeruginosa biofilms, interspecies competition, and virulence. The AQ Pseudomonas quinolone signal (PQS) is also a known quorum-sensing signal. We detail spatial identification of AQ, PQS, and 2-alkyl-4-hydroxyquinoline N-oxide (AQNO) metabolites in both swarm and biofilm communities. We find that AQNO metabolites are abundant signatures in active swarming communities.

8.
Anal Chem ; 90(9): 5654-5663, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29623707

RESUMO

After several decades of widespread use for mapping elemental ions and small molecular fragments in surface science, secondary ion mass spectrometry (SIMS) has emerged as a powerful analytical tool for molecular imaging in biology. Biomolecular SIMS imaging has primarily been used as a qualitative technique; although the distribution of a single analyte can be accurately determined, it is difficult to map the absolute quantity of a compound or even to compare the relative abundance of one molecular species to that of another. We describe a method for quantitative SIMS imaging of small molecules in agar-based microbial communities. The microbes are cultivated on a thin film of agar, dried under nitrogen, and imaged directly with SIMS. By use of optical microscopy, we show that the area of the agar is reduced by 26 ± 2% (standard deviation) during dehydration, but the overall biofilm morphology and analyte distribution are largely retained. We detail a quantitative imaging methodology, in which the ion intensity of each analyte is (1) normalized to an external quadratic regression curve, (2) corrected for isomeric interference, and (3) filtered for sample-specific noise and lower and upper limits of quantitation. The end result is a two-dimensional surface density image for each analyte. The sample preparation and quantitation methods are validated by quantitatively imaging four alkyl-quinolone and alkyl-quinoline N-oxide signaling molecules (including Pseudomonas quinolone signal) in Pseudomonas aeruginosa colony biofilms. We show that the relative surface densities of the target biomolecules are substantially different from values inferred through direct intensity comparison and that the developed methodologies can be used to quantitatively compare as many ions as there are available standards.


Assuntos
Ágar/química , Imagem Molecular , Pseudomonas aeruginosa/química , Quinolinas/análise , Espectrometria de Massa de Íon Secundário , Biofilmes , Microbiota , Microscopia Confocal , Microscopia de Fluorescência , Tamanho da Partícula
9.
Talanta ; 176: 124-129, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28917731

RESUMO

Self-assembled monolayer (SAM) has been extensively applied as ideal interface layer for construction of biosensors. Its chain length and end functional groups determine the physical and chemical properties of the modified surfaces, which will affect the performance of constructed biosensors. Herein, we studied the influence of chain length of n-alkanethiols SAMs on the immunoreaction kinetics employing attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS). Antibody (rabbit immunoglobulin) is assembled on carboxyl terminated SAMs of n-alkanethiols with different chain lengths (n = 3, 6, 11, 16). The whole fabrication steps of the immunoassay can be monitored in situ by the ATR-SEIRAS. From the time-dependent SEIRA spectra, the interfacial immunoreaction kinetics between the immobilized antibody and antigen (goat anti-rabbit immunoglobulin) can be evaluated. We found that the immunoreaction became faster with increasing the chain length of SAMs. This chain length dependent kinetics might be attributed to different orientations of the assembled antibody caused by different packing densities of SAMs. The present research offers a sensing platform to evaluate immunoassay kinetics and provides fundamentals for construction of immunoassay with high performance.


Assuntos
Técnicas Biossensoriais , Alcanos/química , Anticorpos Anti-Idiotípicos/imunologia , Ouro/química , Imunoensaio , Imunoglobulina G/química , Imunoglobulina G/imunologia , Cinética , Nanopartículas Metálicas/química , Selênio/química , Espectrofotometria Infravermelho , Compostos de Sulfidrila/química , Propriedades de Superfície , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...