Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167336, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972433

RESUMO

Epiregulin (EREG) is a member of the epidermal growth factor (EGF) family. An increasing body of evidence has demonstrated the pivotal role of EREG in the pathogenesis and progression of various malignancies. However, the clinical significance and biological role of EREG in pancreatic ductal adenocarcinoma (PDAC) have yet to be fully elucidated. We found that EREG is highly expressed in PDAC tissues compared with paracancerous tissues through public databases and clinical samples. High EREG expression predicted worse overall survival (OS) and recurrence-free survival (RFS) in patients with PDAC. Multivariate analysis revealed that EREG can serve as an independent prognostic indicator. In addition, EREG silencing inhibited PDAC cell proliferation, migration, progression, altered cell cycle, facilitated apoptosis in vitro and suppressed tumor growth in vivo. Conversely, EREG overexpression facilitated the proliferation, migration, and invasion in PaTu-8988 t cell. Through transcriptome sequencing and experimental verification, we found EREG mediates PDAC tumorigenesis through ERK/p38 MAPK signaling pathway. Moreover, we found EREG expression is closely related to PD-L1 expression in PDAC tissues and cells. Therefore, EREG is expected to be a prospective prognostic and therapeutic marker for PDAC.

2.
Anal Chem ; 96(28): 11280-11289, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38954610

RESUMO

Here, ultrasmall SiO2 nanoparticles (u-SiO2 NPs, <5 nm) with obvious electrochemiluminescence (ECL) phenomenon, which was absent for conventional silica nanoparticles (c-SiO2 NPs), were reported. In a finite ultrasmall volume, the u-SiO2 NPs exhibited increasing ground state energy and higher optical absorption strength due to the electron-hole confinement model and favored catalyzing the reaction through the rapid diffusion of bulk charge, resulting in apparent ECL emission. Then, Zn2+-induced u-SiO2 nanoaggregates (Zn/u-SiO2-Ov nAGG) were synthesized and exhibited improved ECL performance via multipath surface state adjustment of u-SiO2 from several aspects, including aggregation-induced ECL, the generation of oxygen vacancy (Ov), and more positive surface charge. In addition, an ECL biosensor was constructed for ultrasensitive human immunodeficiency virus-related deoxyribonucleic acid detection from 100 aM to 1 nM with a low limit of 50.48 aM, combining the ECL luminescence of Zn/u-SiO2-Ov nAGG with three-dimensional DNA nanomachine-mediated multioutput amplification for enhanced accuracy and sensitivity compared to the single-output method. Therefore, exploring the ECL of ultrasmall nanoparticles via the adjustment of size and surface state provided a valuable indication to a wider investigation and application of novel ECL materials for clinical diagnostic.


Assuntos
DNA Viral , Técnicas Eletroquímicas , Medições Luminescentes , Nanopartículas , Dióxido de Silício , Propriedades de Superfície , Dióxido de Silício/química , Nanopartículas/química , Técnicas Eletroquímicas/métodos , Medições Luminescentes/métodos , DNA Viral/análise , Tamanho da Partícula , Técnicas Biossensoriais/métodos , HIV , Humanos , Limite de Detecção
3.
Sci Rep ; 14(1): 13167, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849513

RESUMO

Exploring the spatial coupling relationship and interaction mechanism between green urbanization (GU) and tourism competitiveness (TC) is of great significance for promoting urban sustainable development. However, the lack of research on the interaction mechanism between GU and TC limits the formulation of effective environmental management policy and urban planning. Taking 734 counties in the Yellow River Basin (YRB) as the study area, this paper analyzes the spatial coupling relationship between GU and TC on the basis of comprehensive evaluation of GU and TC. Then, the interactive mechanism between GU and TC is systematically discussed, and the synergistic development strategy of the two is proposed. The results show that the GU level presents a multicore circle structure, with provincial capitals, prefecture-level urban districts and economically developed counties in east-central regions as high-value centers. The TC at county scale presents a multi-center spatial structure. Additionally, there is a significant positive spatial coupling between GU and TC in the YRB. The analysis further reveals that green urbanization level, social progress, population development, infrastructure construction, economic development quality, and eco-environmental protection has a observably influence on TC. Tourism competitiveness, service competitiveness, location competitiveness, resource competitiveness, market competitiveness, environmental influence, and talent competitiveness has a observably influence on GU. TC can promote GU, and the improvement of green urbanization level can support the development of tourism competitiveness. According to the spatial zoning method, 734 counties are divided into 6 categories, and the coordinated development strategy of GU and TC for each type of district is proposed.

4.
J Am Chem Soc ; 146(21): 14765-14775, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38752294

RESUMO

Ultrafast N2 fixation reactions are quite challenging. Currently used methods for N2 fixation are limited, and strong dinitrogen bonds usually need to be activated via extreme temperature or pressure or by the use of an energy-consuming process with sophisticated catalysts. Herein, we report a novel laser-based chemical method for N2 fixation under ambient conditions without catalysts, this method is called laser bubbling in liquids (LBL), and it directly activates N2 in water (H2O) and efficiently converts N2 into valuable NH3 (max: 4.2 mmol h-1) and NO3- (0.17 mmol h-1). Remarkably, the highest yields of NH3 and NO3- are 4 orders of magnitude greater than the best values for electrocatalysis reported to date. Notably, we further validate the experimental mechanism by using optical emission spectroscopy to detect the production of intermediate plasma and by employing isotope tracing. We also establish that an extremely high-temperature environment far from thermodynamic equilibrium inside a laser-induced bubble and the kinetic process of rapid quenching of bubbles is crucial for N2 activation and fixation to generate NH3 and NOx via LBL. Based on these results, it is shown that LBL is a simple, safe, efficient, green, and sustainable technology that enables the rapid conversion of the renewable feedstocks H2O and N2 to NH3 and NO3-, facilitating new prospects for chemical N2 fixation.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38743530

RESUMO

Breast lesion segmentation from ultrasound images is essential in computer-aided breast cancer diagnosis. To alleviate the problems of blurry lesion boundaries and irregular morphologies, common practices combine CNN and attention to integrate global and local information. However, previous methods use two independent modules to extract global and local features separately, such feature-wise inflexible integration ignores the semantic gap between them, resulting in representation redundancy/insufficiency and undesirable restrictions in clinic practices. Moreover, medical images are highly similar to each other due to the imaging methods and human tissues, but the captured global information by transformer-based methods in the medical domain is limited within images, the semantic relations and common knowledge across images are largely ignored. To alleviate the above problems, in the neighbor view, this paper develops a pixel neighbor representation learning method (NeighborNet) to flexibly integrate global and local context within and across images for lesion morphology and boundary modeling. Concretely, we design two neighbor layers to investigate two properties (i.e., number and distribution) of neighbors. The neighbor number for each pixel is not fixed but determined by itself. The neighbor distribution is extended from one image to all images in the datasets. With the two properties, for each pixel at each feature level, the proposed NeighborNet can evolve into the transformer or degenerate into the CNN for adaptive context representation learning to cope with the irregular lesion morphologies and blurry boundaries. The state-of-the-art performances on three ultrasound datasets prove the effectiveness of the proposed NeighborNet. The code is available at: https://github.com/fjcaoww/NeighborNet.

6.
Anal Chem ; 96(22): 9043-9050, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38774984

RESUMO

Zearalenone (ZEN) is an extremely hazardous chemical widely existing in cereals, and its high-sensitivity detection possesses significant significance to human health. Here, the cathodic aggregation-induced electrochemiluminescence (AIECL) performance of tetraphenylethylene nanoaggregates (TPE NAs) was modulated by solvent regulation, based on which an electrochemiluminescence (ECL) aptasensor was constructed for sensitive detection of ZEN. The aggregation state and AIECL of TPE NAs were directly and simply controlled by adjusting the type of organic solvent and the fraction of water, which solved the current shortcomings of low strength and weak stability of the cathode ECL signal for TPE. Impressively, in a tetrahydrofuran-water mixed solution (volume ratio, 6:4), the relative ECL efficiency of TPE NAs reached 16.03%, which was 9.2 times that in pure water conditions, and the maximum ECL spectral wavelength was obviously red-shifted to 617 nm. In addition, "H"-shape DNA structure-mediated dual-catalyzed hairpin self-assembly (H-D-CHA) with higher efficiency by the synergistic effect between the two CHA reactions was utilized to construct a sensitive ECL aptasensor for ZEN analysis with a low detection limit of 0.362 fg/mL. In conclusion, solvent regulation was a simple and efficient method for improving the performance of AIECL materials, and the proposed ECL aptasensor had great potential for ZEN monitoring in food safety.


Assuntos
Técnicas Eletroquímicas , Eletrodos , Medições Luminescentes , Solventes , Zearalenona , Zearalenona/análise , Zearalenona/química , Solventes/química , Estilbenos/química , Limite de Detecção , Técnicas Biossensoriais , Aptâmeros de Nucleotídeos/química
7.
J Food Sci ; 89(6): 3276-3289, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38700316

RESUMO

The objective of this paper was to evaluate the effect of spray drying (SD), spray freeze-drying (SFD), freeze-drying (FD), and microwave freeze-drying (MFD) on the characteristics of fish oil (FO) microcapsules. The physicochemical properties, morphology, fatty acid composition, and stability of the microcapsules were analyzed. The encapsulation efficiencies of microcapsules dried by SD, SFD, FD, and MFD were 86.98%, 77.79%, 63.29%, and 57.89%, respectively. SD microcapsules exhibited superior properties in terms of effective loading capacity, color, and flowability. Conversely, SFD microcapsules demonstrated improved solubility. Microencapsulation positively affected the thermal stability of FO, but the content of unsaturated fatty acids decreased. The findings from the storage experiment indicated that the oxidative stability of SD fish oil microcapsules was marginally lower compared to microcapsules produced through three alternative drying techniques, all of which were based on the FD concept. The comparison of various drying methods and their effects on the quality of FO microcapsules offers valuable insights that can serve as a foundation for the industrial production of high-quality microcapsules.


Assuntos
Cápsulas , Composição de Medicamentos , Óleos de Peixe , Liofilização , Micro-Ondas , Secagem por Atomização , Óleos de Peixe/química , Liofilização/métodos , Composição de Medicamentos/métodos , Dessecação/métodos , Tamanho da Partícula , Estabilidade de Medicamentos
8.
Environ Microbiol ; 26(4): e16620, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38627038

RESUMO

Actinomycetota, associated with macroalgae, remains one of the least explored marine niches. The secondary metabolism of Actinomycetota, the primary microbial source of compounds relevant to biotechnology, continues to drive research into the distribution, dynamics, and metabolome of these microorganisms. In this study, we employed a combination of traditional cultivation and metagenomic analysis to investigate the diversity of Actinomycetota in two native macroalgae species from the Portuguese coast. We obtained and taxonomically identified a collection of 380 strains, which were distributed across 12 orders, 15 families, and 25 genera affiliated with the Actinomycetia class, with Streptomyces making up approximately 60% of the composition. Metagenomic results revealed the presence of Actinomycetota in both Chondrus crispus and Codium tomentosum datasets, with relative abundances of 11% and 2%, respectively. This approach identified 12 orders, 16 families, and 17 genera affiliated with Actinomycetota, with minimal overlap with the cultivation results. Acidimicrobiales emerged as the dominant actinobacterial order in both macroalgae, although no strain affiliated with this taxonomic group was successfully isolated. Our findings suggest that macroalgae represent a hotspot for Actinomycetota. The synergistic use of both culture-dependent and independent approaches proved beneficial, enabling the identification and recovery of not only abundant but also rare taxonomic members.


Assuntos
Actinobacteria , Clorófitas , Alga Marinha , Humanos , Alga Marinha/microbiologia , Portugal , Bactérias
9.
Talanta ; 275: 126144, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38663062

RESUMO

Here, 3D g-C3N4 with dense N vacancy in its 3D porous interconnected open-framework was synthesized, and the co-reactive 3-(dibutylamino)propylamine (DBAPA) was further covalently coupled onto the surface, resulting in a strong self-enhanced anodic electrochemiluminescence (ECL). Through introduction of high-density N vacancy, for the obtained 3D g-C3N4-NV, the band gap was broadened and the electrical conductivity was enhanced, realizing an obvious ECL improvement. Moreover, after the covalent binding of co-reactive DBAPA, the obtained 3D g-C3N4-NV-DBAPA exhibited a more intensive self-enhanced ECL signal due to the higher co-reaction efficiency originated from shorter electron transfer distance and lower energy loss. Based on the high initial signal of the proposed 3D g-C3N4-NV-DBAPA, a sensitive ECL biosensor with signal "on-off" was fabricated in assistance with multiple horizontal ordered hybridization chain reaction (HO-HCR). Through orderly fixing the reacted DNA chains on the Y-shape DNA structure on the electrode could effectively decrease diffusion process and improve the reaction efficiency of HCR process, resulting in the formation of numerous long horizontal double-strand DNA that could immobilize abundant ferrocene-doxorubicin (Fc-Dox) with ECL quenching effect. Meanwhile, compared to the traditional vertical HCR, the HO-HCR could make the quench reagent closer to the ECL emitter on the electrode surface and obtain a more effective quenching effect to enhance the sensing sensitivity. As a result, the proposed ECL biosensor archived the sensitive measurement of staphylococcus aureus with a detection limit of 10.3 aM.


Assuntos
Técnicas Eletroquímicas , Eletrodos , Medições Luminescentes , Staphylococcus aureus , Staphylococcus aureus/isolamento & purificação , Técnicas Eletroquímicas/métodos , Medições Luminescentes/métodos , Técnicas Biossensoriais/métodos , Grafite/química , Compostos de Nitrogênio/química , Limite de Detecção , Nitrilas/química , Nitrogênio/química
10.
ACS Omega ; 9(16): 18449-18457, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38680377

RESUMO

To provide a theoretical basis for the frozen storage of potato-oat composite dough and its products, this investigation examines changes in the quality of potato-oat composite dough and its resulting product during freeze-thaw cycles. The study measured key aspects such as moisture content, dynamic rheological properties, water state, protein secondary structure, color, and sensory assessment. The influence of these factors on the product's quality is analyzed. The findings revealed that the freeze-thaw treatment caused a reduction in water content, freezable water, and deeply bound water, as well as an increase in weakly bound water, ß-sheet, random coil, and α-helix, and a decreased ß-turn of the potato-oat composite dough. Additionally, the dough treated by freeze-thaw cycles resulted in darker color, and the sensory properties of the product were affected significantly after exceeding three freeze-thaw cycles. Moreover, an increase in the number of freeze-thaw cycles resulted in an upward trend of moisture content for the composite dough, whereas G' initially increased and then decreased. The G″ of the composite dough peaked after the third freeze-thaw cycle. Overall, the composite dough quality significantly deteriorated at the fourth freeze-thaw cycle. There was a significant increase in the freezable water content, the largest modulus of elasticity, and the smallest tan δ. Therefore, the usage of the potato-oat composite dough should not exceed three cycles.

11.
ACS Appl Mater Interfaces ; 16(12): 15514-15524, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38488069

RESUMO

With the increasing development of nanomaterials, the construction of multiscale nanostructured interphase has emerged as a viable technique to reinforce carbon fiber-reinforced polymer composites. Here, "flexible" aramid nanofibers (ANFs) were first introduced on the surface of carbon fibers (CF) by electrophoretic deposition (EPD), and then "rigid" MXene sheets were grafted by ultrasonic impregnation. This feasible two-step treatment introduces a hierarchical "rigid-flexible" structure at the CF/polyamide (PA) interface. Results showed that this "rigid-flexible" multilayer structure improved the roughness, chemical bonding, mechanical interlocking, and wettability of CF/PA composites. At the same time, the modulus variation between the fiber and the matrix is significantly smoothed due to the increased thickness of the interfacial layer, increasing the payload transfer from the PA matrix to the fiber and decreasing the stress concentration. Compared to the desized CF, the interlaminar shear strength (ILSS) and tensile strength of the modified CF-ANF@MX0.2/PA composite increased by 50.02 and 36.11%, respectively. This innovative interfacial design and feasible treatment method facilitate the construction of firmly interacting interfacial layers in CF/PA composites, offering broad prospects for the production of high-performance CF/PA composites.

12.
J Colloid Interface Sci ; 664: 319-328, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479268

RESUMO

Rational construction of efficient and robust bifunctional oxygen electrocatalysts is key but challenging for the widespread application of rechargeable zinc-air batteries (ZABs). Herein, bifunctional ligand Co metal-organic frameworks were first explored to fabricate a hybrid of heterostructured CoOx/Co nanoparticles anchored on a carbon substrate rich in CoNx sites (CoOx/Co@CoNC) via a one-step pyrolysis method. Such a unique heterostructure provides abundant CoNx and CoOx/Co active sites to drive oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), respectively. Besides, their positive synergies facilitate electron transfer and optimize charge/mass transportation. Consequently, the obtained CoOx/Co@CoNC exhibits a superior ORR activity with a higher half-wave potential of 0.88 V than Pt/C (0.83 V vs. RHE), and a comparable OER performance with an overpotential of 346 mV at 10 mA cm-2 to the commercial RuO2. The assembled ZAB using CoOx/Co@CoNC as a cathode catalyst displays a maximum power density of 168.4 mW cm-2, and excellent charge-discharge cyclability over 250 h at 5 mA cm-2. This work highlights the great potential of heterostructures in oxygen electrocatalysis and provides a new pathway for designing efficient bifunctional oxygen catalysts toward rechargeable ZABs.

13.
Eur J Med Res ; 29(1): 166, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475882

RESUMO

Ovarian cancer (OC) is one of the most common reproductive tumors in women, whereas current treatment options are limited. ß-lactamase-like-protein 2 (LACTB2) has been observed to be associated with various cancers, but its function in OC is unknown. Therefore, we evaluate the prognostic value and the underlying function of LACTB2 in OC. In this study, high expression of LACTB2 was observed in OC compared with normal controls. Kaplan-Meier Plotter analysis revealed that overexpressed LACTB2 is strongly correlated with poor prognosis. We conducted GO/KEGG analysis to investigate the potential biological function of LACTB2 in OC. GESA analysis showed that LACTB2 was closely related to immune-related pathways. Subsequently, we explored the relationship between LACTB2 and 24 types of immune cells in OC. The results suggested that LACTB2 was positively associated with multiple tumor-infiltrating immune cells. Importantly, LACTB2 may modulate immune cell infiltration in OC to influence prognosis. In conclusion, LACTB2 can be used as a promising prognostic biomarker and immunotherapy target for OC.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Prognóstico , Biologia Computacional , Imunoterapia , Estimativa de Kaplan-Meier , beta-Lactamases
14.
Aging (Albany NY) ; 16(4): 3674-3693, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364254

RESUMO

Head and neck squamous cell carcinoma (HNSCC) ranks as the eighth most prevalent malignancy globally and has the eighth greatest fatality rate when compared to all other forms of cancer. The inhibitor of apoptosis protein (IAP) family comprises a collection of apoptosis-negative modulators characterized by at least one single baculovirus IAP repeat (BIR) domain in its N-terminal region. While the involvement of the IAP family is associated with the initiation and progression of numerous tumours, its specific role in HNSCC remains poorly understood. Thus, this study aimed to comprehensively examine changes in gene expression, immunomodulatory effects, prognosis, and functional enrichment of HNSCC utilising bioinformatics analysis. Elevated levels of distinct IAP family members were observed to varying degrees in HNSCC, with high BIRC2 expression indicating a worse prognosis. Additionally, Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to probe the enrichment of gene expression and biological processes related to the IAP family in HNSCC. The infiltration levels of immune cells were shown to be strongly associated with the IAP gene expression, as determined by subsequent analysis. Hence, BIRC2 could be an effective immunotherapy target for HNSCC. Collectively, novel knowledge of the biological roles and prognostic implications of IAP family members in HNSCC is presented in this study.


Assuntos
Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Prognóstico , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/terapia , Biomarcadores Tumorais/genética , Proteínas Inibidoras de Apoptose/genética , Regulação Neoplásica da Expressão Gênica
15.
Proc Natl Acad Sci U S A ; 121(9): e2319286121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38394244

RESUMO

Hydrogen (H2) and hydrogen peroxide (H2O2) play crucial roles as energy carriers and raw materials for industrial production. However, the current techniques for H2 and H2O2 production rely on complex catalysts and involve multiple intermediate steps. In this study, we present a straightforward, environmentally friendly, and highly efficient laser-induced conversion method for overall water splitting to simultaneously generate H2 and H2O2 at ambient conditions without any catalysts. The laser direct overall water splitting approach achieves an impressive light-to-hydrogen energy conversion efficiency of 2.1%, with H2 production rates of 2.2 mmol/h and H2O2 production rates of 65 µM/h in a limited reaction area (1 mm2) within a short real reaction time (0.36 ms/h). Furthermore, we elucidate the underlying physics and chemistry behind the laser-induced water splitting to produce H2 and H2O2. The laser-induced cavitation bubbles create an optimal microenvironment for water-splitting reactions because of the transient high temperatures (104 K) surpassing the chemical barrier required. Additionally, their rapid cooling rate (1010 K/s) hinders reverse reactions and facilitates H2O2 retention. Finally, upon bubble collapse, H2 is released while H2O2 remains dissolved in the water. Moreover, a preliminary amplification experiment demonstrates the potential industrial applications of this laser chemistry. These findings highlight that laser-based production of H2 and H2O2 from water holds promise as a straightforward, environmentally friendly, and efficient approach on an industrial scale beyond conventional chemical catalysis.

16.
Sci Total Environ ; 923: 171172, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38402982

RESUMO

Aerobic methane-oxidizing bacteria (MOB) play a crucial role in mitigating the greenhouse gas methane emission, particularly prevalent in flooded wetlands. The implementation of ridge with no-tillage practices within a rice-rape rotation system proves effective in overcoming the restrictive redox conditions associated with waterlogging. This approach enhances capillary water availability from furrows, especially during periods of low rainfall, thereby supporting plant growth on the ridges. However, the microbe-mediated accumulation of soil organic carbon and nitrogen remains insufficiently understood under this agricultural practice, particularly concerning methane oxidation, which holds ecological and agricultural significance in the rice fields. In this study, the ridge and ditch soils from a 28-year-old ridge with no-tillage rice field experiment were utilized for incubation with 13C-CH4 and 15NN2 to estimate the methane-oxidizing and N2-fixing potentials. Our findings reveal a significantly higher net production of fresh soil organic carbon in the ridge compared to the ditch soil during methane oxidation, with values of 626 and 543 µg 13C g-1 dry weight soil, respectively. Additionally, the fixed 15N exhibited a twofold increase in the ridge soil (14.1 µg 15N g-1 dry weight soil) compared to the ditch soil. Interestingly, the result of DNA-based stable isotope probing indicated no significant differences in active MOB and N2 fixers between ridge and ditch soils. Both Methylocystis-like type II and Methylosarcina/Methylomonas-like type I MOB catalyzed methane into organic biomass carbon pools. Soil N2-fixing activity was associated with the 15N-labeling of methane oxidizers and non-MOB, such as methanol oxidizers (Hyphomicrobium) and conventional N2 fixers (Burkholderia). Methane oxidation also fostered microbial interactions, as evidenced by co-occurrence patterns. These results underscore the dual role of microbial methane oxidation - not only as a recognized sink for the potent greenhouse gas methane but also as a source of soil organic carbon and bioavailable nitrogen. This emphasizes the pivotal role of microbial methane metabolism in contributing to soil carbon and nitrogen accumulation in ridge with no-tillage systems.


Assuntos
Gases de Efeito Estufa , Methylococcaceae , Oryza , Solo , Oryza/metabolismo , Carbono/metabolismo , Metano/metabolismo , Gases de Efeito Estufa/metabolismo , Fixação de Nitrogênio , Oxirredução , Microbiologia do Solo , Methylococcaceae/metabolismo , Nitrogênio/metabolismo
17.
J Am Chem Soc ; 146(7): 4864-4871, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38334947

RESUMO

As a good carrier of hydrogen, ammonia-water has been employed to extract hydrogen in many ways. Here, we demonstrate a simple, green, ultrafast, and highly efficient method for hydrogen extraction from ammonia-water by laser bubbling in liquids (LBL) at room temperature and ambient pressure without catalyst. A maximum apparent yield of 33.7 mmol/h and a real yield of 93.6 mol/h were realized in a small operating space, which were far higher than the yields of most hydrogen evolution reactions from ammonia-water under ambient conditions. We also established that laser-induced cavitation bubbles generated a transient high temperature, which enabled a very suitable environment for hydrogen extraction from ammonia-water. The laser used here can serve as a demonstration of potentially solar-pumped catalyst-free hydrogen extraction and other chemical synthesis. We anticipate that the LBL technique will open unprecedented opportunities to produce chemicals.

18.
J Orthop Surg Res ; 19(1): 59, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216929

RESUMO

OBJECTIVE: Iron accumulation is associated with osteoporosis. This study aims to explore the effect of chronic iron accumulation induced by hepcidin1 deficiency on aging osteoporosis. METHODS: Iron accumulation in hepcidin1 knockout aging mice was assessed by atomic absorption spectroscopy and Perl's staining. Bone microarchitecture was observed using Micro-CT. Hepcidin, ferritin, oxidative stress, and markers of bone turnover in serum were detected by enzyme-linked immunosorbent assay. Bone formation and resorption markers were measured by real-time quantitative PCR. Cell aging was induced by D-galactose treatment. CCK-8, flow cytometry, EdU assays, and Alizarin red staining were performed to reveal the role of hepcidin1 knockout in cell model. Iron Colorimetric Assay Kit and western blot were applied to detect iron and ferritin levels in cells, respectively. RESULTS: In hepcidin1-knockout mice, the ferritin and iron contents in liver and tibia were significantly increased. Iron accumulation induced by hepcidin1 knockout caused a phenotype of low bone mass and deteriorated bone microarchitecture. Osteogenic marker was decreased and osteoclast marker was increased in mice, accompanied by increased oxidative stress level. The mRNA expression levels of osteoclast differentiation markers (RANKL, Mmp9, OPG, Trap, and CTSK) were up-regulated, while bone formation markers (OCN, ALP, Runx2, SP7, and Col-1) were down-regulated in model group, compared to wild type mice. In vitro, hepcidin1 knockdown inhibited proliferation and osteogenic differentiation, while promoted apoptosis, with increased levels of iron and ferritin. CONCLUSION: Iron accumulation induced by hepcidin1 deficiency aggravates the progression of aging osteoporosis via inhibiting osteogenesis and promoting osteoclast genesis.


Assuntos
Osteogênese , Osteoporose , Camundongos , Animais , Osteoporose/genética , Osteoporose/metabolismo , Ferro , Ferritinas/farmacologia , Diferenciação Celular/genética , Envelhecimento
19.
Sensors (Basel) ; 24(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276380

RESUMO

The rapid development of wireless communication technology has led to an increasing number of internet of thing (IoT) devices, and the demand for spectrum for these devices and their related applications is also increasing. However, spectrum scarcity has become an increasingly serious problem. Therefore, we introduce a collaborative spectrum sensing (CSS) framework in this paper to identify available spectrum resources so that IoT devices can access them and, meanwhile, avoid causing harmful interference to the normal communication of the primary user (PU). However, in the process of sensing the PUs signal in IoT devices, the issue of sensing time and decision cost (the cost of determining whether the signal state of the PU is correct or incorrect) arises. To this end, we propose a distributed cognitive IoT model, which includes two IoT devices independently using sequential decision rules to detect the PU. On this basis, we define the sensing time and cost functions for IoT devices and formulate an average cost optimization problem in CSS. To solve this problem, we further regard the optimal sensing time problem as a finite horizon problem and solve the threshold of the optimal decision rule by person-by-person optimization (PBPO) methodology and dynamic programming. At last, numerical simulation results demonstrate the correctness of our proposal in terms of the global false alarm and miss detection probability, and it always achieves minimal average cost under various costs of each observation taken and thresholds.

20.
J Food Sci ; 89(2): 1012-1021, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38174800

RESUMO

Whey protein isolates (WPIs) were treated at 50, 60, 70, and 80°C to obtain thermally modified WPI. Gum arabic (GA) and thermal modification of WPI were used as novel wall materials to improve the quality of Cornus officinalis flavonoid (COF) microcapsules using microwave freeze-drying technique in this study. Results showed that all the thermal modification treatment decreased emulsifying activity index of WPI, whereas the solubility and emulsifying stability index (ESI) of WPI gradually increased with the increase of heating temperature. Compared to the untreated protein, the thermal modification treatment at 70°C increased the solubility and ESI of WPI by 14.91% ± 0.71% and 26.70% ± 0.94%, respectively. The microcapsules prepared with the modified protein at 60°C had the highest encapsulation efficiency (95.13% ± 2.36%), the lowest moisture content (1.42% ± 0.34%), and the highest solubility (84.41% ± 0.91). Scanning electron microscopy images showed that COF microcapsules were uniformly spherical, and the sizes of the microcapsules were in the following order: 12.42 ± 0.37 µm (80°C) > 11.7 ± 0.23 µm (untreated group) > 9.44 ± 0.33 µm (60°C) > 9.24 ± 0.14 µm (50°C) > 7.69 ± 0.29 µm (70°C). In the simulated in vitro digestion experiments, the release rate of COF microcapsules in the gastric digestion phase was less than that in the intestinal digestion phase, and it reached 66.46% at intestinal digestion phase. These results suggested that heated WPI and GA could be an effective nanocarrier to enhance the stability of COF.


Assuntos
Cornus , Goma Arábica , Proteínas do Soro do Leite , Flavonoides , Cápsulas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...