Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 443(Pt A): 130079, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36242955

RESUMO

Compared with the widespread and serious heavy metal contamination in soils, microplastic pollution has gained attention only recently. Little is known about how microplastics affect the distribution of heavy metals in soils, especially across soil components level. In this study, a 180-day soil aging experiment and soil density fractionation were performed to investigate the effect of polypropylene (PP) microplastics on the binding behavior of cadmium (Cd) to solid components, i.e. particulate organic matter, organo-mineral complexes (OMC), and mineral. Results showed addition of 2-10% microplastics in soils induced the decomposition of OMC fraction by 10.88-23.10%. Compared to the control, the content of dissolved organic carbon increased, and pH, humic substances, and soil organic matter decreased with microplastics. After 180d of aging, the content of Cd in OMC fraction increased by 17.92%, while microplastics made Cd contents decline by 10.01-19.75%. The impacts strongly depended on the dose and surface characteristic of microplastics. Overall, PP microplastics increased the concentration of bioavailable Cd in soils via decreasing soil retention of Cd by the OMC fraction. These findings based on the solid components level will provide a new perspective for understanding microplastics effects on soil systems and pollutants.


Assuntos
Metais Pesados , Poluentes do Solo , Solo/química , Cádmio/química , Microplásticos , Plásticos/metabolismo , Polipropilenos , Disponibilidade Biológica , Poluentes do Solo/análise , Metais Pesados/análise , Material Particulado
2.
Water Res ; 221: 118748, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35728497

RESUMO

Acid mine drainage (AMD) contains abundant iron, sulfates, and various metal ions, and it causes environmental pollution. The traditional AMD lime neutralization forms a layer of iron hydroxide and gypsum on the surface of the lime particles, preventing continuous reaction and leading to excessive lime addition and neutralized sludge production. In this study, an approach for treating AMD using a cyclic process of biooxidation and electroreduction before lime neutralization was proposed, in which the Fe2+ in AMD was oxidized to Fe3+ and induced to form schwertmannite through Acidithiobacillus ferrooxidans. The remaining Fe3+ was reduced to Fe2+ using an electric field. After three biooxidation and two electroreduction cycles, 98.2% of Fe and 62.4% of SO42- in AMD precipitated as schwertmannite (Fe8O8(OH)5.16(SO4)1.37). The yield of schwertmannite reached 33.98 g/LAMD, with a high specific surface area of 112.59 m2/g. The lime dosage and sludge yield of the treated AMD in the subsequent neutralization stage (pH = 7.00) decreased by 85.0% and 74.5%, respectively, than those of raw AMD. The pilot test results showed that the integrated treatment of biooxidation-electroreduction cyclic mineralization and lime neutralization has practical applications.


Assuntos
Esgotos , Poluentes Químicos da Água , Ácidos , Compostos de Cálcio , Concentração de Íons de Hidrogênio , Ferro , Compostos de Ferro , Óxidos , Poluentes Químicos da Água/análise
3.
Chemosphere ; 297: 134192, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35257703

RESUMO

China plays a key role in global plastic production, consumption and disposal, which arouses growing concern about microplastics (MPs) contamination in Chinese freshwater systems. However, few reviews have discussed the characteristics of MP pollution in whole freshwater systems at a national scale. In this review, we summarized the characteristics, sources and transport pathways of MPs in Chinese freshwater systems including surface water and sediment. Results showed that current research mainly focused on the middle and lower reaches of the Yangtze River and its tributaries, as well as lakes and reservoirs along the Yangtze River. Large-scale reservoirs, rivers and lakes located in densely populated areas usually showed higher abundances of MPs. The majority of MPs in Chinese surface water and sediment mainly consisted of polyethylene and polypropylene, and the most common morphologies were fibers and fragments. To identify the sources and pathways, we introduced the source-sink-pathway model, and found that sewage system, farmland and aquaculture area were the three most prevalent sinks in freshwater systems in China. The source-sink-pathway model will help to further identify the migration of MPs from sources to freshwater systems.


Assuntos
Microplásticos , Poluentes Químicos da Água , China , Monitoramento Ambiental/métodos , Lagos , Plásticos , Água , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 788: 147620, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34029813

RESUMO

Although individual toxicity of microplastics (MPs) to organism has been widely studied, limited knowledge is available on the interactions between heavy metals and MPs, as well as potential biological impacts from their combinations. The interaction between MPs and heavy metals may alter their environmental behaviors, bioavailability and potential toxicity, leading to ecological risks. In this paper, an overview of different sources of heavy metals on MPs is provided. Then the recent achievements in adsorption isotherms, adsorption kinetics and interaction mechanism between MPs and heavy metals are discussed. Besides, the factors that influence the adsorption of heavy metals on MPs such as polymer properties, chemical properties of heavy metals, and other environmental factors are also considered. Furthermore, potential combined toxic effects from MPs and heavy metals on organisms and human health are further summarized.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Humanos , Metais Pesados/toxicidade , Microplásticos , Plásticos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
5.
RSC Adv ; 8(2): 1039-1046, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35538942

RESUMO

Acid mine drainage (AMD) is typically characterized by low pH, a high concentration of sulfate and dissolved heavy metals. Therefore, it is of practical significance to promote the transformation of soluble Fe and SO4 2- into iron hydroxysulfate minerals by biomineralization of Acidithiobacillus ferrooxidans. This enhances the lime neutralization efficiency of AMD by reducing the production of ferric hydroxide and waste gypsum. In this study, a new microbial enhanced plug-flow ditch reaction system was developed for the pretreatment of AMD on a semi-pilot scale. System stability under different hydraulic retention times (HRTs) was examined and the effects of microbe enhancement-lime neutralization technology and direct lime neutralization technology were compared. The bio-oxidation efficiency of Fe2+ (5 g L-1) reached 100% in some parts of the system when HRT was 3 and 2 days, and the time taken to reach steady state was 6 and 4 days, respectively. When the HRT was 1 day, the reaction system had operated for 4 days before the equilibrium was lost. At the optimum HRT (2 days) and after the system was stable, the average precipitation rate of total Fe was 53.62% and the average removal rate of As(iii) was 17.27%. Following microbial enhanced pretreatment, the amount of lime required and waste residues generated for AMD neutralization decreased by 75.00% and 85.25%, respectively. This result supports the application of microbial enhancement-lime neutralization passive treatment technology for AMD.

6.
Huan Jing Ke Xue ; 37(5): 1960-7, 2016 May 15.
Artigo em Chinês | MEDLINE | ID: mdl-27506054

RESUMO

Application of organic fertilizer can reduce the solubility and bioavailability of heavy metals in contaminated soil, but in the flooded anaerobic environment, organic fertilizer will be decomposed to produce a large number of low molecular organic acids, which can inhibit the biological activity of Acidithiobacillus species. Batch cultures studies showed that the monocarboxylic organic acids including formic acid, acetic acid, propionic acid, and butyric acid exhibited a marked toxicity to Acidithiobacillus species, as indicated by that 90% of inhibitory rate for Fe2 and So oxidation in 72 h were achieved at extremely low concentrations of 41.2 mg · L⁻¹, 78.3 mg · L⁻¹, 43.2 mg · L⁻¹, 123.4 mg · L⁻¹ and 81.9 mg 230. 4 mg · L⁻¹, 170.1 mg · L⁻¹, 123.4 mg · L⁻¹ respectively. Of these organic acids, formic acid was the most toxic one as indicated by that Fe2 and So oxidation was almost entirely inhibited at a low concentration. In addition, it was found that Acidithiobacillus ferrooxidans was more sensitive to low molecular organic acids than Acidithiobacillus thiooxidans. What's more, there was little effect on biological acidification process of heavy metal contaminated soil when organic acids were added at initial stage (Oh), but it was completely inhibited when these acids were added after 12 h of conventional biological acidification, thus decreasing the efficiency of heavy metals dissolution from soil.


Assuntos
Acidithiobacillus/metabolismo , Ácidos/química , Metais Pesados/isolamento & purificação , Microbiologia do Solo , Poluentes do Solo/isolamento & purificação , Biodegradação Ambiental , Oxirredução , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...