Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 348: 123869, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548150

RESUMO

The Chinese central government has initiated pilot projects to promote the adoption of gasoline containing 10%v ethanol (E10). Vehicle emissions using ethanol blended fuels require investigation to estimate the environmental impacts of the initiative. Five fuel formulations were created using two blending methods (splash blending and match blending) to evaluate the impacts of formulations on speciated volatile organic compounds (VOCs) from exhaust emissions. Seven in-use vehicles covering China 4 to China 6 emission standards were recruited. Vehicle tests were conducted using the Worldwide Harmonized Test Cycle (WLTC) in a temperature-controlled chamber at 23 °C and -7 °C. Splash blended E10 fuels led to significant reductions in VOC emissions by 12%-75%. E10 fuels had a better performance of reducing VOC emissions in older model vehicles than in newer model vehicles. These results suggested that E10 fuel could be an option to mitigate the VOC emissions. Although replacing methyl tert-butyl ether (MTBE) with ethanol in regular gasoline had no significant effects on VOC emissions, the replacement led to lower aromatic emissions by 40%-60%. Alkanes and aromatics dominated approximately 90% of VOC emissions for all vehicle-fuel combinations. Cold temperature increased VOC emissions significantly, by 3-26 folds for all vehicle/fuel combinations at -7 °C. Aromatic emissions were increased by cold temperature, from 2 to 26 mg/km at 23 °C to 33-238 mg/km at -7 °C. OVOC emissions were not significantly affected by E10 fuel or cold temperature. The ozone formation potential (OFP) and secondary organic aerosol formation potential (SOAFP) of splash blended E10 fuels decreased by up to 76% and 81%, respectively, compared with those of E0 fuels. The results are useful to update VOC emission profiles of Chinese vehicles using ethanol blended gasoline and under low-temperature conditions.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Gasolina/análise , Temperatura Baixa , Compostos Orgânicos Voláteis/análise , Etanol , Emissões de Veículos/análise , China , Poluentes Atmosféricos/análise
2.
Sci Total Environ ; 912: 168950, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38043810

RESUMO

We established the comprehensive emission profiles of organic compounds for typical Chinese diesel trucks. The profiles cover the entire volatility range, including speciated volatile organic compounds (VOCs), intermediate-volatility organic compounds (IVOCs), and semi-volatile organic compounds (SVOCs). The VOCs and I/SVOCs were analyzed by one-dimensional gas chromatography quadrupole mass spectrometry (GC qMS) and two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-ToF-MS) separately. The impacts of starting mode and aftertreatment technology on the VOC, gaseous and particulate I/SVOC emissions, and the gas-particle partitioning were investigated. The emission factor (EF) of gas phase I/SVOCs was approximately 10 times higher than that of particle phase I/SVOCs and the chemical compositions and volatility distributions varied greatly. VOC, IVOC, and SVOC emissions significantly decreased when vehicles were equipped with advanced aftertreatment technologies. Diesel particulate filters (DPF) can remove >71 % VOC, 74 % gaseous, and 88 % particulate I/SVOCs, many of which are significant secondary organic aerosol (SOA) precursors. The chemical compositions and volatility distributions of the gaseous I/SVOCs and unburned diesel fuel were similar, revealing that diesel fuel is the main origin of the gaseous I/SVOCs. The I/SVOC emission profiles covering the whole volatility range, i.e., log10C* = -3 to 10 (C*: effective saturation concentration, µg m-3) were established.

3.
Environ Pollut ; 305: 119284, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35436508

RESUMO

Intermediate-volatility and semi-volatile organic compounds (I/SVOCs) are key precursors of secondary organic aerosol (SOA). However, the comprehensive characterization of I/SVOCs has long been an analytical challenge. Here, we develop a novel method of speciating and quantifying I/SVOCs using two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-ToF-MS) by constructing class-screening programs based on their characteristic fragments and mass spectrum patterns. Using this new approach, we then present a comprehensive analysis of gaseous I/SVOC emissions from heavy-duty diesel vehicles (HDDVs). Over three-thousand compounds are identified and classified into twenty-one categories. The dominant compound groups of I/SVCOs emitted by HDDVs are alkanes (including normal and branched alkanes, 37-66%), benzylic alcohols (7-20%), alkenes (3-11%), cycloalkanes (3-9%), and benzylic ketones (1-4%). Oxygenated I/SVOCs (O-I/SVOCs, e.g., benzylic alcohols and ketones) are first quantified and account for >20% of the total I/SVOC mass. Advanced aftertreatment devices largely reduce the total I/SVOC emissions but increase the proportion of O-I/SVOCs. With the speciation data, we successfully map the I/SVOCs into the two-dimensional volatility basis set space, which facilitates a better estimation of SOA. As aging time goes by, approximate 45% difference between the two scenarios after seven-day aging is observed, which confirms the significant impact of speciated I/SVOC emission data on SOA prediction.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Aerossóis/análise , Poluentes Atmosféricos/análise , Álcoois/análise , Alcanos/análise , Cromatografia Gasosa-Espectrometria de Massas , Gases/análise , Cetonas , Espectrometria de Massas , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise
4.
Sci Total Environ ; 833: 155127, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35421477

RESUMO

Comprehensive characterization of diesel vehicle emitted polycyclic aromatic hydrocarbon (PAH) emissions is yet to achieve due to the limitation of analytical methods. Therefore, we herein developed a two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-ToF-MS) method and quantified the total PAHs from diesel vehicles based on their characteristic fragments and mass spectral patterns. Overall, the emission factors (EFs) of total PAHs (gas + particle) are observed to range from 4.1 ± 2.5 mg km-1 to 51.4 ± 22.2 mg km-1 under cold-start and hot-start conditions for one China IV and two China VI heavy-duty diesel vehicles (HDDVs), of which the un-speciated PAHs account for more than 97%. Gaseous PAHs (g-PAHs) are dominated by three-ring PAHs, whereas particulate PAHs (p-PAHs) are dominated by two-ring PAHs. The total PAHs partition significantly into the gas phase for whole fleets and cycles, except that five-ring PAHs partition almost completely into the particle phase. The aftertreatment technologies (e.g., diesel particulate filter, DPF) significantly reduce the total PAH emissions by 49.8 ± 33.2%. The minimum toxic equivalency factors (TEFs) are deployed to estimate the toxicity of the total PAHs. Much higher toxicity is obtained than those in previous studies, indicating that the PAH toxicity of diesel vehicle emissions might be largely underestimated.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Cromatografia Gasosa-Espectrometria de Massas , Gases/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Emissões de Veículos/análise
5.
Environ Pollut ; 262: 114280, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32146368

RESUMO

Emissions of major reactive nitrogen compounds, including nitric oxide (NO), nitrogen dioxide (NO2) and ammonia (NH3), from heavy-duty diesel vehicles (HDDVs) place substantial pressure on air quality for many large cities in China. To control nitrogen oxide (NOX) emissions from HDDVs, selective catalytic reduction (SCR) systems have been widely used since the China IV standards. To investigate the impacts of aftertreatment technologies and driving conditions on real-world emissions of reactive nitrogen compounds, a portable emissions measurement system was employed to test eighteen heavy-duty diesel trucks in China. The results showed that the China IV and China V HDDVs with appropriate SCR functionality could reduce NOX emissions by 36% and 53%, respectively, compared to the China III results, although their real-world emissions were still higher than the corresponding emission limits for regulatory engine tests. For these HDDVs, five samples were tested with NH3 emissions, ranging from 1.67 ppm to 51.49 ppm. The NH3 emission rates tended to significantly increase under high-speed driving conditions. The results indicate that the current SCR technology may have certain risks in exceeding the future China VI NH3 limit. However, five China IV/V HDDVs were found to have SCR temperature sensors that were intentionally tampered with, resulting in comparable or even higher NOX emissions and zero NH3 emissions. Increased NO2 emissions due to the adoption of diesel oxidation catalysts and diesel particulate filters were also found from our experiments. This study highlights the importance of enhancing in-use compliance requirements and eliminating aftertreatment tampering for China IV and China V HDDVs.


Assuntos
Poluentes Atmosféricos/análise , Emissões de Veículos/análise , China , Cidades , Veículos Automotores , Compostos de Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...