Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Deliv Transl Res ; 14(2): 295-311, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37581742

RESUMO

Extracellular vesicles (EVs), which are nanoparticles that are actively released by cells, contain a variety of biologically active substances, serve as significant mediators of intercellular communication, and participate in many processes, in health and pathologically. Compared with traditional nanodrug delivery systems (NDDSs), EVs have unique advantages due to their natural physiological properties, such as their biocompatibility, stability, ability to cross barriers, and inherent homing properties. A growing number of studies have reported that EVs deliver therapeutic proteins, small-molecule drugs, siRNAs, miRNAs, therapeutic proteins, and nanomaterials for targeted therapy in various diseases. However, due to the lack of standardized techniques for isolating, quantifying, and characterizing EVs; lower-than-anticipated drug loading efficiency; insufficient clinical production; and potential safety concerns, the practical application of EVs still faces many challenges. Here, we systematically review the current commonly used methods for isolating EVs, summarize the types and methods of loading therapeutic drugs into EVs, and discuss the latest progress in applying EVs as NDDs. Finally, we present the challenges that hinder the clinical application of EVs.


Assuntos
Vesículas Extracelulares , Sistemas de Liberação de Fármacos por Nanopartículas , Nanopartículas , RNA Interferente Pequeno , Humanos
2.
Microb Pathog ; 99: 111-118, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27524262

RESUMO

Peptidoglycan (PGN) is the major structural component of the bacterial cell wall, especially gram positive bacteria, which induces inflammatory responses. Mammalian target of rapamycin (mTOR) regulates the production of inflammatory cytokines induced by antigens, while the function of mTORC1 in peptidoglycan induced inflammatory response is unknown. This study aims to examine the role and the regulatory mechanism of mTOR signaling pathway in peptidoglycan induced cytokine expression in mouse macrophages. We observed that peptidoglycan upregulated the secretion of proinflammatory cytokines IL-6, TNF-α and anti-inflammatory cytokine IL-10 in a dose- and time-dependent manner. mTORC1 positively regulates IL-6 and TNF-α, but negatively regulates IL-10 secretion. mTORC1 regulates NF-κB p65 activation by degrading IκB-α in response to peptidoglycan. mTOR, NF-κB and STAT3 signaling pathways are involved in peptidoglycan induced inflammatory cytokines expression via a TLR1/TLR2-dependent mechanism in macrophages. Thus, mTORC1 pathway regulates the innate immune response to bacterial peptidoglycan.


Assuntos
Citocinas/biossíntese , Macrófagos/imunologia , Macrófagos/microbiologia , Complexos Multiproteicos/metabolismo , NF-kappa B/metabolismo , Peptidoglicano/imunologia , Staphylococcus aureus/imunologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular , Expressão Gênica , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Peptidoglicano/isolamento & purificação , Staphylococcus aureus/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...