Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 60(3): 562-574, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30496548

RESUMO

Melatonin plays an important role in stress tolerance in plants. In this study, exogenous melatonin significantly alleviated the dwarf phenotype and inhibited the decrease of plant fresh weight induced by excess copper (Cu2+). Our results indicated that melatonin alleviated Cu2+ toxicity by improving Cu2+ sequestration, carbon metabolism and ROS (reactive oxygen species) scavenging, rather than by influencing the Cu2+ uptake under excess Cu2+ conditions. Transcriptome analysis showed that melatonin broadly altered gene expression under Cu2+ stress. Melatonin increased the levels of glutathione and phytochelatin to chelate excess Cu2+ and promoted cell wall trapping, thus keeping more Cu2+ in the cell wall and vacuole. Melatonin inhibited ROS production and enhanced antioxidant systems at the transcriptional level and enzyme activities, thus building a line of defense in response to excess Cu2+. The distribution of nutrient elements was recovered by melatonin which was disturbed by Cu2+. In addition, melatonin activated carbon metabolism, especially glycolysis and the pentose phosphate pathway, to generate more ATP, an intermediate for biosynthesis. Taken together, melatonin alleviated Cu2+ toxicity in cucumber via multiple mechanisms. These results will help to resolve the toxic effects of Cu2+ stress on plant growth and development. These results can be used for new strategies to solve problems associated with Cu2+ stress.


Assuntos
Cucumis sativus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peroxidação de Lipídeos/genética , Peroxidação de Lipídeos/fisiologia , Melatonina/metabolismo , Melatonina/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma/genética
2.
Sci Rep ; 7(1): 503, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28356562

RESUMO

Seed germination is a critical and complex process in the plant life cycle. Although previous studies have found that melatonin can promote seed germination under salt stress, the involvement of melatonin in the regulation of proteomic changes remains poorly understood. In this study, a total of 157 proteins were significantly influenced (ratio ≥ 2 or ≤ -2) by melatonin during seed germination under salt stress using a label-free quantitative technique. Our GO analysis revealed that several pathways were obviously regulated by melatonin, including ribosome biosynthesis, lipid metabolism, carbohydrate metabolism, and storage protein degradation. Not only stress-tolerant proteins but also proteins that produce ATP as part of glycolysis, the citric acid cycle, and the glyoxylate cycle were upregulated by melatonin. Overall, this study provides new evidence that melatonin alleviates the inhibitory effects of NaCl stress on seed germination by promoting energy production. This study is the first to provide insights at the proteomic level into the molecular mechanism of melatonin in response to salt stress in cucumber seeds. This may be helpful to further understand the role of melatonin in cucumber seed germination under stress conditions.


Assuntos
Cucumis sativus/fisiologia , Metabolismo Energético , Germinação , Melatonina/metabolismo , Proteômica , Salinidade , Sementes/fisiologia , Estresse Fisiológico , Redes e Vias Metabólicas , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Proteômica/métodos
3.
J Pineal Res ; 57(3): 269-79, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25112973

RESUMO

Although previous studies have found that melatonin can promote seed germination, the mechanisms involved in perceiving and signaling melatonin remain poorly understood. In this study, it was found that melatonin was synthesized during cucumber seed germination with a peak in melatonin levels occurring 14 hr into germination. This is indicative of a correlation between melatonin synthesis and seed germination. Meanwhile, seeds pretreated with exogenous melatonin (1 µM) showed enhanced germination rates under 150 mM NaCl stress compared to water-pretreated seeds under salinity stress. There are two apparent mechanisms by which melatonin alleviated salinity-induced inhibition of seed germination. Exogenous melatonin decreased oxidative damage induced by NaCl stress by enhancing gene expression of antioxidants. Under NaCl stress, compared to untreated control, the activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were significantly increased by approximately 1.3-5.0-fold, with a concomitant 1.4-2.0-fold increase of CsCu-ZnSOD, CsFe-ZnSOD, CsCAT, and CsPOD in melatonin-pretreated seeds. Melatonin also alleviated salinity stress by affecting abscisic acid (ABA) and gibberellin acid (GA) biosynthesis and catabolism during seed germination. Compared to NaCl treatment, melatonin significantly up-regulated ABA catabolism genes (e.g., CsCYP707A1 and CsCYP707A2, 3.5 and 105-fold higher than NaCl treatment at 16 hr, respectively) and down-regulated ABA biosynthesis genes (e.g., CsNECD2, 0.29-fold of CK2 at 16 hr), resulting in a rapid decrease of ABA content during the early stage of germination. At the same time, melatonin positively up-regulated GA biosynthesis genes (e.g., GA20ox and GA3ox, 2.3 and 3.9-fold higher than NaCl treatment at 0 and 12 hr, respectively), contributing to a significant increase of GA (especially GA4) content. In this study, we provide new evidence suggesting that melatonin alleviates the inhibitory effects of NaCl stress on germination mainly by regulating the biosynthesis and catabolism of ABA and GA4.


Assuntos
Ácido Abscísico/metabolismo , Antioxidantes/farmacologia , Cucumis sativus/crescimento & desenvolvimento , Germinação/fisiologia , Giberelinas/metabolismo , Melatonina/fisiologia , Salinidade , Sementes/crescimento & desenvolvimento
4.
J Pineal Res ; 56(1): 39-50, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24102657

RESUMO

Cucumber is a model cucurbitaceous plant with a known genome sequence which is important for studying molecular mechanisms of root development. In this study, RNA sequencing was employed to explore the mechanism of melatonin-induced lateral root formation in cucumber under salt stress. Three groups of seeds were examined, that is, seeds primed without melatonin (CK), seeds primed in a solution containing 10 or 500 µmol/L melatonin (M10 and M500, respectively). These seeds were then germinated in NaCl solution. The RNA-seq analysis generated 16,866,670 sequence reads aligned with 17,920 genes, which provided abundant data for the analysis of lateral root formation. A total of 17,552, 17,450, and 17,393 genes were identified from roots of the three treatments (CK, M10 and M500, respectively). The expression of 121 genes was significantly up-regulated, and 196 genes were significantly down-regulated in M500 which showed an obvious increase on the number of lateral roots. These genes were significantly enriched in 57 KEGG pathways and 16 GO terms (M500 versus CK). Based on their expression pattern, peroxidase-related genes were selected as the candidates to be involved in the melatonin response. Several transcription factor families might play important roles in lateral root formation processes. A number of genes related to cell wall formation, carbohydrate metabolic processes, oxidation/reduction processes, and catalytic activity also showed different expression patterns as a result of melatonin treatments. This RNA-sequencing study will enable the scientific community to better define the molecular processes that affect lateral root formation in response to melatonin treatment.


Assuntos
Cucumis sativus/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Melatonina/farmacologia , Raízes de Plantas/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Análise por Conglomerados , Cucumis sativus/genética , Cucumis sativus/metabolismo , Perfilação da Expressão Gênica , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , RNA de Plantas/análise , RNA de Plantas/genética , RNA de Plantas/metabolismo , Análise de Sequência de RNA , Cloreto de Sódio , Estresse Fisiológico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...