Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38674527

RESUMO

CCT MOTIF FAMILY (CMF) genes belong to the CCT gene family and have been shown to play a role in diverse processes, such as flowering time and yield regulation, as well as responses to abiotic stresses. CMF genes have not yet been identified in Brassica rapa. A total of 25 BrCMF genes were identified in this study, and these genes were distributed across eight chromosomes. Collinearity analysis revealed that B. rapa and Arabidopsis thaliana share many homologous genes, suggesting that these genes have similar functions. According to sequencing analysis of promoters, several elements are involved in regulating the expression of genes that mediate responses to abiotic stresses. Analysis of the tissue-specific expression of BrCMF14 revealed that it is highly expressed in several organs. The expression of BrCMF22 was significantly downregulated under salt stress, while the expression of BrCMF5, BrCMF7, and BrCMF21 was also significantly reduced under cold stress. The expression of BrCMF14 and BrCMF5 was significantly increased under drought stress, and the expression of BrCMF7 was upregulated. Furthermore, protein-protein interaction network analysis revealed that A. thaliana homologs of BrCMF interacted with genes involved in the abiotic stress response. In conclusion, BrCMF5, BrCMF7, BrCMF14, BrCMF21, and BrCMF22 appear to play a role in responses to abiotic stresses. The results of this study will aid future investigations of CCT genes in B. rapa.

2.
J Magn Reson Imaging ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655903

RESUMO

BACKGROUND: MRI-based placental analyses have been used to improve fetal growth restriction (FGR) assessment by complementing ultrasound-based measurements. However, these are still limited by time-consuming manual annotation in MRI data and the lack of mother-based information. PURPOSE: To develop and validate a hybrid model for accurate FGR assessment by automatic placental radiomics on T2-weighted imaging (T2WI) and multifeature fusion. STUDY TYPE: Retrospective. POPULATION: 274 pregnant women (29.5 ± $$ \pm $$ 4.0 years) from two centers were included and randomly divided into training (N = 119), internal test (N = 40), time-independent validation (N = 43), and external validation (N = 72) sets. FIELD STRENGTH/SEQUENCE: 1.5-T, T2WI half-Fourier acquisition single-shot turbo spin-echo pulse sequence. ASSESSMENT: First, the placentas on T2WI were manually annotated, and a deep learning model was developed to automatically segment the placentas. Then, the radiomic features were extracted from the placentas and selected by three-step feature selection. In addition, fetus-based measurement features and mother-based clinical features were obtained from ultrasound examinations and medical records, respectively. Finally, a hybrid model based on random forest was constructed by fusing these features, and further compared with models based on other machine learning methods and different feature combinations. STATISTICAL TESTS: The performances of placenta segmentation and FGR assessment were evaluated by Dice similarity coefficient (DSC) and the area under the receiver operating characteristic curve (AUROC), respectively. A P-value <0.05 was considered statistically significant. RESULTS: The placentas were automatically segmented with an average DSC of 90.0%. The hybrid model achieved an AUROC of 0.923, 0.931, and 0.880 on the internal test, time-independent validation, and external validation sets, respectively. The mother-based clinical features resulted in significant performance improvements for FGR assessment. DATA CONCLUSION: The proposed hybrid model may be able to assess FGR with high accuracy. Furthermore, information complementation based on placental, fetal, and maternal features could also lead to better FGR assessment performance. TECHNICAL EFFICACY: Stage 2.

3.
Int J Mol Sci ; 25(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542514

RESUMO

Guanine nucleotide-exchange factors (GEFs) genes play key roles in plant root and pollen tube growth, phytohormone responses, and abiotic stress responses. RopGEF genes in Brassica rapa have not yet been explored. Here, GEF genes were found to be distributed across eight chromosomes in B. rapa and were classified into three subfamilies. Promoter sequence analysis of BrRopGEFs revealed the presence of cis-elements characteristic of BrRopGEF promoters, and these cis-elements play a role in regulating abiotic stress tolerance and stress-related hormone responses. Organ-specific expression profiling demonstrated that BrRopGEFs were ubiquitously expressed in all organs, especially the roots, suggesting that they play a role in diverse biological processes. Gene expression analysis revealed that the expression of BrRopGEF13 was significantly up-regulated under osmotic stress and salt stress. RT-qPCR analysis revealed that the expression of BrRopGEF13 was significantly down-regulated under various types of abiotic stress. Protein-protein interaction (PPI) network analysis revealed interactions between RopGEF11, the homolog of BrRopGEF9, and the VPS34 protein in Arabidopsis thaliana, as well as interactions between AtRopGEF1, the homolog of BrRopGEF13 in Arabidopsis, and the ABI1, HAB1, PP2CA, and CPK4 proteins. VPS34, ABI1, HAB1, PP2CA, and CPK4 have previously been shown to confer resistance to unfavorable environments. Overall, our findings suggest that BrRopGEF9 and BrRopGEF13 play significant roles in regulating abiotic stress tolerance. These findings will aid future studies aimed at clarifying the functional characteristics of BrRopGEFs.


Assuntos
Brassica rapa , Brassica rapa/metabolismo , Estresse Fisiológico/genética , Estresse Salino , Família Multigênica , Perfilação da Expressão Gênica , Filogenia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Photodiagnosis Photodyn Ther ; 44: 103843, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37863376

RESUMO

Cutaneous squamous cell carcinoma (cSCC) is a prevalent malignant tumor typically treated through surgical removal. However, when the lesion is situated in specific areas like the hands, feet, or lips, particularly if it's sizable, surgical interventions can adversely impact appearance and function. In such cases, non-surgical treatments are preferable to preserve both aesthetics and functionality. We present a case of recurrent cSCC on the plantar region post-surgery. Given the extensive lesion area, deep infiltration, and the patient's reliance on foot function, hematoporphyrin derivative-photodynamic therapy (HpD-PDT) was chosen over traditional surgery. The lesion was successfully treated, and while a minor recurrence was observed after 20 months, it was localized and amenable to non-surgical intervention. We posit that HpD-PDT is a viable treatment for cSCC, especially in unique locations, with extensive lesions, and postoperative recurrence.


Assuntos
Carcinoma de Células Escamosas , Fotoquimioterapia , Neoplasias Cutâneas , Humanos , Derivado da Hematoporfirina/uso terapêutico , Fotoquimioterapia/métodos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias Cutâneas/patologia , Recidiva Local de Neoplasia/tratamento farmacológico
5.
Genes (Basel) ; 14(8)2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37628616

RESUMO

Nitrate transporter 2 (NRT2) proteins play vital roles in both nitrate (NO3-) uptake and translocation as well as abiotic stress responses in plants. However, little is known about the NRT2 gene family in Brassica rapa. In this study, 14 NRT2s were identified in the B. rapa genome. The BrNRT2 family members contain the PLN00028 and MATE_like superfamily domains. Cis-element analysis indicated that regulatory elements related to stress responses are abundant in the promoter sequences of BrNRT2 genes. BrNRT2.3 expression was increased after drought stress, and BrNRT2.1 and BrNRT2.8 expression were significantly upregulated after salt stress. Furthermore, protein interaction predictions suggested that homologs of BrNRT2.3, BrNRT2.1, and BrNRT2.8 in Arabidopsis thaliana may interact with the known stress-regulating proteins AtNRT1.1, AtNRT1.5, and AtNRT1.8. In conclusion, we suggest that BrNRT2.1, BrNRT2.3, and BrNRT2.8 have the greatest potential for inducing abiotic stress tolerance. Our findings will aid future studies of the biological functions of BrNRT2 family genes.


Assuntos
Arabidopsis , Brassica rapa , Brassica rapa/genética , Transportadores de Nitrato , Estresse Salino , Arabidopsis/genética , Transporte Biológico
6.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37569822

RESUMO

The AT-hook motif nuclear localized (AHL) gene family is a highly conserved transcription factor critical for the growth, development, and stress tolerance of plants. However, the function of the AHL gene family in Brassica rapa (B. rapa) remains unclear. In this study, 42 AHL family members were identified from the B. rapa genome and mapped to nine B. rapa chromosomes. Two clades have formed in the evolution of the AHL gene family. The results showed that most products encoded by AHL family genes are located in the nucleus. Gene duplication was common and expanded the BrAHL gene family. According to the analysis of cis-regulatory elements, the genes interact with stress responses (osmotic, cold, and heavy metal stress), major hormones (abscisic acid), and light responses. In addition, the expression profiles revealed that BrAHL genes are widely expressed in different tissues. BrAHL16 was upregulated at 4 h under drought stress, highly expressed under cadmium conditions, and downregulated in response to cold conditions. BrAHL02 and BrAHL24 were upregulated at the initial time point and peaked at 12 h under cold and cadmium stress, respectively. Notably, the interactions between AHL genes and proteins under drought, cold, and heavy metal stresses were observed when predicting the protein-protein interaction network.


Assuntos
Brassica rapa , Brassica rapa/metabolismo , Genes de Plantas , Perfilação da Expressão Gênica , Cádmio/metabolismo , Genoma de Planta , Estresse Fisiológico/genética , Filogenia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Curr Med Imaging ; 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37449712

RESUMO

BACKGROUND: Early pregnancy loss (EPL) or spontaneous loss of an intrauterine pregnancy within the first trimester occurs commonly worldwide. It is useful to predict the possibility of fetal chromosomal abnormalities using other cheap and easily available markers. OBJECTIVE: This study aimed to evaluate whether the uterine artery pulsatility index (UtA-PI) can predict fetal chromosomal abnormality in early pregnancy loss (EPL). METHODS: This was a retrospective cohort study including 148 women who underwent dilation and curettage for missed abortion. The UtA-PI was measured and evaluated by transvaginal ultrasound. Abnormal UtA-PI was identified through the mean of left and right UA-PI ≥ 90th percentiles of the relevant values for the corresponding gestational age. Copy number variation sequencing (CNV-seq) was performed on EPL cases without maternal cell contamination. RESULTS: 107 (72.3%) cases were classified with normal UtA-PI, while 41 (27.7%) cases were classified with abnormal UtA-PI. The fetal chromosomal abnormality rate was significantly higher in cases with normal UtA-PI than in those with abnormal UtA-PI (67.3% vs 22.0%, P = 7.1 × 10-7). Compared to cases with abnormal UtA-PI, the risk of fetal chromosomal abnormalities in cases with normal UtA-PI increased with an odds ratio of 7.3 (95% confidence interval [CI]: 3.2‒17.0, P = 4 × 10-7). The predictive value of normal UtA-PI alone for fetal chromosomal abnormalities was shown to have an area under the curve of 0.67‒0.71 in our population. CONCLUSION: The UtA-PI seems to be lower and less likely to be elevated in EPL with fetal chromosomal abnormalities compared to those without aneuploidies. We suggest that UtA-PI should be examined in all EPL patients.

8.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37445710

RESUMO

The ASYMMETRIC LEAVES2/LATERAL ORGAN BOUNDARIES (AS2/LOB) gene family plays a pivotal role in plant growth, induction of phytohormones, and the abiotic stress response. However, the AS2 gene family in Brassica rapa has yet to be investigated. In this study, we identified 62 AS2 genes in the B. rapa genome, which were classified into six subfamilies and distributed across 10 chromosomes. Sequence analysis of BrAS2 promotors showed that there are several typical cis-elements involved in abiotic stress tolerance and stress-related hormone response. Tissue-specific expression analysis showed that BrAS2-47 exhibited ubiquitous expression in all tissues, indicating it may be involved in many biological processes. Gene expression analysis showed that the expressions of BrAS2-47 and BrAS2-10 were significantly downregulated under cold stress, heat stress, drought stress, and salt stress, while BrAS2-58 expression was significantly upregulated under heat stress. RT-qPCR also confirmed that the expression of BrAS2-47 and BrAS2-10 was significantly downregulated under cold stress, drought stress, and salt stress, and in addition BrAS2-56 and BrAS2-4 also changed significantly under the three stresses. In addition, protein-protein interaction (PPI) network analysis revealed that the Arabidopsis thaliana genes AT5G67420 (homologous gene of BrAS2-47 and BrAS2-10) and AT3G49940 (homologous gene of BrAS2-58) can interact with NIN-like protein 7 (NLP7), which has been previously reported to play a role in resistance to adverse environments. In summary, our findings suggest that among the BrAS2 gene family, BrAS2-47 and BrAS2-10 have the most potential for the regulation of abiotic stress tolerance. These results will facilitate future functional investigations of BrAS2 genes in B. rapa.


Assuntos
Arabidopsis , Brassica rapa , Brassica rapa/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Genoma de Planta , Perfilação da Expressão Gênica , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Filogenia
9.
BMC Pulm Med ; 23(1): 239, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400770

RESUMO

BACKGROUND: Hypoxia contributes to the development of invasive and metastatic cancer cells, and is detrimental to cancer treatment. This study aimed to explore the molecular mechanisms by which hypoxic microenvironments affect hypoxic non-small cell lung cancer (NSCLC) development and the effects of M2 macrophage-derived extracellular vesicles (EVs) on NSCLC cells. METHODS: A549 cells were cultured in an anoxic incubator for 48 h to construct hypoxic A549 cells, and then normal and hypoxic A549 cells were harvested for RNA sequencing. Next, THP-1 cells were used to induce M2 macrophages, and EVs were isolated from THP-1 cells and M2 macrophages. Cell counting kit-8 and transwell assays were used to determine the viability and migration of hypoxic A549 cells, respectively. RESULTS: After sequencing, 2426 DElncRNAs and 501 DEmiRNAs were identified in normal A549 cells and hypoxic A549 cells. These DElncRNAs and DEmiRNAs were significantly enriched in "Wnt signaling pathway," "Hippo signaling pathway," "Rap1 signaling pathway," "calcium signaling pathway," "mTOR signaling pathway," and "TNF signaling pathway." Subsequently, ceRNA networks consisting of 4 lncRNA NDRG1 transcripts, 16 miRNAs and 221 target mRNAs were built, and the genes in the ceRNA networks were significantly associated with "Hippo signaling pathway" and "HIF-1 signaling pathway." EVs were successfully extracted from THP-1 cells and M2 macrophages, and M2 macrophage-derived EVs significantly enhanced the viability and migration of hypoxic A549 cells. Finally, M2 macrophage-derived EVs further upregulated the expression of NDRG1-009, NDRG1-006, VEGFA, and EGLN3, while downregulating miR-34c-5p, miR-346, and miR-205-5p in hypoxic A549 cells. CONCLUSIONS: M2 macrophage-derived EVs may worsen the progression of NSCLC in a hypoxic microenvironment by regulating the NDRG1-009-miR-34c-5p-VEGFA, NDRG1-006-miR-346-EGLN3, NDRG1-009-miR-205-5p-VEGFA, and Hippo/HIF-1 signaling pathways.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , Hipóxia , Microambiente Tumoral
10.
Artigo em Inglês | MEDLINE | ID: mdl-37262115

RESUMO

With the fast development of AI technologies, deep learning is widely applied for biomedical data analytics and digital healthcare. However, there remain gaps between AI-aided diagnosis and real-world healthcare demands. For example, hemodynamic parameters of the middle cerebral artery (MCA) have significant clinical value for diagnosing adverse perinatal results. Nevertheless, the current measurement procedure is tedious for sonographers. To reduce the workload of sonographers, we propose MCAS-GP, a deep learning-empowered framework that tackles the Middle Cerebral Artery Segmentation and Gate Proposition. MCAS-GP can automatically segment the region of the MCA and detect the corresponding position of the gate in the procedure of fetal MCA Doppler assessment. In MCAS-GP, a novel learnable atrous spatial pyramid pooling (LASPP) module is designed to adaptively learn multi-scale features. We also propose a novel evaluation metric, Affiliation Index, for measuring the effectiveness of the position of the output gate. To evaluate our proposed MCAS-GP, we build a large-scale MCA dataset, collaborating with the International Peace Maternity and Child Health Hospital of China welfare institute (IPMCH). Extensive experiments on the MCA dataset and two other public surgical datasets demonstrate that MCAS-GP can achieve considerable performance improvement in both accuracy and inference time.

11.
Biomacromolecules ; 24(6): 2790-2803, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37125731

RESUMO

Cyclic dinucleotides (CDNs) are a promising class of immune agonists that trigger the stimulator of interferon genes (STING) to activate both innate and acquired immunity. However, the efficacy of CDNs is limited by drug delivery barriers. Therefore, we developed a combined immunotherapy strategy based on injectable reactive oxygen species (ROS)-responsive hydrogels, which sustainably release 5,6-dimethylxanthenone-4-acetic acid (DMXAA) as known as a STING agonist and indocyanine green (ICG) by utilizing a high level of ROS in the tumor microenvironment (TME). The STING agonist combined with photothermal therapy (PTT) can improve the biological efficacy of DMXAA, transform the immunosuppressive TME into an immunogenic and tumoricidal microenvironment, and completely kill tumor cells. In addition, this bioreactive gel can effectively leverage local ROS to facilitate the release of immunotherapy drugs, thereby enhancing the efficacy of combination therapy, improving the TME, inhibiting tumor growth, inducing memory immunity, and protecting against tumor rechallenge.


Assuntos
Quitosana , Neoplasias , Humanos , Imunoterapia , Proteínas de Membrana , Neoplasias/tratamento farmacológico , Terapia Fototérmica , Espécies Reativas de Oxigênio , Microambiente Tumoral
12.
Artigo em Inglês | MEDLINE | ID: mdl-37256257

RESUMO

OBJECTIVES: To assess the cost-effectiveness of Arg16Gly ADRB2 pharmacogenomic testing compared with no Arg16Gly ADRB2 testing to guide the use of long-acting ß2 receptor agonist (LABA) in asthma patients aged 1 to 5 years in China. METHODS: This economic evaluation developed a Markov model with four health states (no exacerbation, mild exacerbation, moderate-to-severe exacerbation, and death). Transition probabilities were estimated from the rate of exacerbations, the case-fatality rate of patients hospitalized for exacerbations, and natural mortality. Costs included drug costs and exacerbation management costs. Cost inputs and utilities for each health state were gained from public databases and the literatures. Costs and quality-adjusted life years (QALYs) were estimated for ten years. Deterministic and probabilistic sensitivity analyses were performed. RESULTS: In the base case analysis, in contrast to the group without the genotype test, the incremental total cost was -¥334.7, and the incremental QALY was 0.001 in the Arg16Gly ADRB2 genotyping group. Therefore, the Arg16Gly ADRB2 test group was the dominant strategy for children with asthma in China. The sensitivity analyses showed that the model was relatively stable. CONCLUSION: Arg16Gly ADRB2 testing before using LABA is a cost-effective approach compared with no gene testing for pediatric asthma.


Assuntos
Asma , Farmacogenética , Criança , Humanos , Análise Custo-Benefício , Asma/tratamento farmacológico , Asma/genética , Custos de Medicamentos , Quimioterapia Combinada , Anos de Vida Ajustados por Qualidade de Vida , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/uso terapêutico
13.
Cells ; 12(7)2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37048168

RESUMO

Heavy metal-associated proteins (HMPs) participate in heavy metal detoxification. Although HMPs have been identified in several plants, no studies to date have identified the HMPs in Brassica rapa (B. rapa). Here, we identified 85 potential HMPs in B. rapa by bioinformatic methods. The promoters of the identified genes contain many elements associated with stress responses, including response to abscisic acid, low-temperature, and methyl jasmonate. The expression levels of BrHMP14, BrHMP16, BrHMP32, BrHMP41, and BrHMP42 were upregulated under Cu2+, Cd2+, Zn2+, and Pb2+ stresses. BrHMP06, BrHMP30, and BrHMP41 were also significantly upregulated after drought treatment. The transcripts of BrHMP06 and BrHMP11 increased mostly under cold stress. After applying salt stress, the expression of BrHMP02, BrHMP16, and BrHMP78 was induced. We observed increased BrHMP36 expression during the self-incompatibility (SI) response and decreased expression in the compatible pollination (CP) response during pollen-stigma interactions. These changes in expression suggest functions for these genes in HMPs include participating in heavy metal transport, detoxification, and response to abiotic stresses, with the potential for functions in sexual reproduction. We found potential co-functional partners of these key players by protein-protein interaction (PPI) analysis and found that some of the predicted protein partners are known to be involved in corresponding stress responses. Finally, phosphorylation investigation revealed many phosphorylation sites in BrHMPs, suggesting post-translational modification may occur during the BrHMP-mediated stress response. This comprehensive analysis provides important clues for the study of the molecular mechanisms of BrHMP genes in B. rapa, especially for abiotic stress and pollen-stigma interactions.


Assuntos
Brassica rapa , Brassica rapa/genética , Brassica rapa/metabolismo , Polinização , Estresse Fisiológico/genética , Estresse Salino , Pólen
15.
Nature ; 614(7947): 303-308, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36697825

RESUMO

Flowering plants have evolved numerous intraspecific and interspecific prezygotic reproductive barriers to prevent production of unfavourable offspring1. Within a species, self-incompatibility (SI) is a widely utilized mechanism that rejects self-pollen2,3 to avoid inbreeding depression. Interspecific barriers restrain breeding between species and often follow the SI × self-compatible (SC) rule, that is, interspecific pollen is unilaterally incompatible (UI) on SI pistils but unilaterally compatible (UC) on SC pistils1,4-6. The molecular mechanisms underlying SI, UI, SC and UC and their interconnections in the Brassicaceae remain unclear. Here we demonstrate that the SI pollen determinant S-locus cysteine-rich protein/S-locus protein 11 (SCR/SP11)2,3 or a signal from UI pollen binds to the SI female determinant S-locus receptor kinase (SRK)2,3, recruits FERONIA (FER)7-9 and activates FER-mediated reactive oxygen species production in SI stigmas10,11 to reject incompatible pollen. For compatible responses, diverged pollen coat protein B-class12-14 from SC and UC pollen differentially trigger nitric oxide, nitrosate FER to suppress reactive oxygen species in SC stigmas to facilitate pollen growth in an intraspecies-preferential manner, maintaining species integrity. Our results show that SRK and FER integrate mechanisms underlying intraspecific and interspecific barriers and offer paths to achieve distant breeding in Brassicaceae crops.


Assuntos
Brassicaceae , Flores , Hibridização Genética , Proteínas de Plantas , Polinização , Brassicaceae/genética , Brassicaceae/metabolismo , Depressão por Endogamia , Óxido Nítrico/metabolismo , Fosfotransferases/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Pólen/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Especificidade da Espécie , Flores/metabolismo , Autofertilização
16.
J Clin Med ; 12(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36675388

RESUMO

OBJECTIVE: This study aimed to determine whether the combination of pregnancy-associated endothelial cell-specific molecule 1 (ESM-1), the placental growth factor (PLGF) in the first- and second-trimester maternal serum, and the uterine artery Doppler pulsatility index (PI) in the second trimester can predict preeclampsia (PE). METHODS: The serum levels of ESM-1 and PLGF in 33 severe preeclampsia (SPE) patients, 18 mild preeclampsia patients (MPE), and 60 age-matched normal controls (CON) were measured. The Doppler ultrasonography was performed, and the artery pulsatility index (PI) was calculated for the same subjects. RESULTS: The 2nd PLGF level was significantly lower and the 2nd PI was higher than those in the MPE group. Combining the 2nd PLGF with the 2nd PI yielded an AUC of 0.819 (83.33% sensitivity and 70.00% specificity). In the SPE group, the 1st ESM-1 level and the 2nd PLGF level were significantly lower, and the 2nd ESM-1 level and the 2nd PI were significantly higher in the SPE group. The combination of the 1st ESM-1, the 2nd PLGF, and the 2nd PI yielded an AUC of 0.912 (72.73% sensitivity and 95.00% specificity). CONCLUSIONS: The 1st ESM-1 and the 2nd PLGF levels and the 2nd PI were associated with PE. The combination of serum biomarkers and the PI improved the screening efficiency of the PE prediction, especially for SPE.

17.
Radiol Case Rep ; 18(1): 397-401, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36425393

RESUMO

Ovarian granulosa cell tumor (OGCT) is a relatively rare ovarian tumor originating from ovarian sex cord-stromal cells. It is generally believed that the tumor is mainly a solid mass in the early stage, and with the volume increasing, the tumor would undergo multiple cystic changes. But few such cases have been reported. This article reports a case of transition of ovarian granulosa cell tumor from a solid mass to a cystic mass in 2 months on MR imaging in an adult woman. In this case, a 55-year-old postmenopausal woman underwent MR imaging for irregular vaginal bleeding in March 2022, during which a 6-cm cystic-solid mass was detected in the right ovary with iso-hypo intensity on T1WI, iso-hyper intensity on T2WI, and hyper intensity on DWI. After injection of the contrast medium, the mass displayed progressive and obvious enhancement, which was diagnosed as OGCT. Due to the COVID-19 pandemic, the patient was unable to receive surgery in time. Two months later, the patient returned to the hospital and underwent MRI again, when a 20-cm cyst mass was detected in the pelvis, which contained little solid component at the edge. The patient was admitted and underwent a total abdominal hysterectomy with bilateral salpingo-oophorectomy. The postoperative pathology confirmed the diagnosis of adult type stage IC1 OGCT. This finding may be precious in that it could help understand the initiation and progression of OGCT.

18.
J Food Biochem ; 46(12): e14500, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36515171

RESUMO

Alcoholic liver disease (ALD) has become a health issue globally. Laminarin, a low molecular weight marine-derived ß-glucan, has been identified with multiple biological activities. In this study, the ameliorative effect on ALD of laminarin isolated from brown algae was investigated. Phenotypic, pathological alterations and biochemical characteristics indicated that laminarin administration (100 mg/kg/day) significantly alleviated liver injury and improved liver function in the alcohol-induced mice. Gene chip results indicated that laminarin treatment caused 52 up-regulated and 13 down-regulated genes in the hepatic tissues of alcohol-induced damage mice, and most of these genes are associated with regulation of oxidative stress (such as CYP450/glutathione-dependent antioxidation), Wnt signaling pathway, retinol metabolism, and cAMP pathway based on GO and KEGG analysis. PPI network analysis indicated that the downstream target genes lied in the hub of the net. Our experiments also confirmed the changed expressions of some target genes. Taken together, these results suggest that laminarin can ameliorate alcohol-induced damage in mice and its molecular mechanism lies in modulating anti-oxidation pathway, WNT pathway, and cAMP pathway, which regulate the expressions of downstream target genes and alleviate alcohol-induced damage. Our study provides new clue to prevent alcohol-induced damage and will be benefit to develop functional foods. PRACTICAL APPLICATIONS: This study verified the positive effect on alcoholic liver disease (ALD) of laminarin, a water-soluble brown algae-derived ß-glucan, linked by ß-(1,3) glycosidic bonds with ß-(1,6) branches. Laminarin significantly alleviated liver injury and improved liver function of ALD mice. Moreover, transcriptomics and bioinformatics analysis further revealed the gene expression patterns, hub targets, and signalings including CYP450/glutathione, Wnt, retinol metabolism, cAMP pathways regulated by laminarin. This research is the first evidence for hepatoprotective effect of laminarin against ALD and its molecular mechanism, which will be advantage to develop functional foods or adjuvant therapy of ALD.


Assuntos
Hepatopatias Alcoólicas , beta-Glucanas , Camundongos , Animais , Vitamina A , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/genética , Etanol , Glutationa
19.
Nutrients ; 14(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36501200

RESUMO

Dietary polyphenols can be utilized to treat obesity and chronic disorders linked to it. Dietary polyphenols can inhibit pre-adipocyte proliferation, adipocyte differentiation, and triglyceride accumulation; meanwhile, polyphenols can also stimulate lipolysis and fatty acid ß-oxidation, but the molecular mechanisms of anti-obesity are still unclear. The mechanistic target of rapamycin (mTOR) is a protein kinase that regulates cell growth, survival, metabolism, and immunity. mTOR signaling is also thought to play a key role in the development of metabolic diseases such as obesity. Recent studies showed that dietary polyphenols could target mTOR to reduce obesity. In this review, we systematically summarized the research progress of polyphenols in preventing obesity through the mTOR signaling pathway. Mechanistically, polyphenols can target multiple signaling pathways and gut microbiota to regulate the mTOR signaling pathway to exert anti-obesity effects. The main mechanisms include: modulating lipid metabolism, adipogenesis, inflammation, etc. Dietary polyphenols exerting an anti-obesity effect by targeting mTOR signaling will broaden our understanding of the anti-obesity mechanisms of polyphenols and provide valuable insights for researchers in this novel field.


Assuntos
Obesidade , Polifenóis , Humanos , Polifenóis/farmacologia , Obesidade/prevenção & controle , Obesidade/metabolismo , Transdução de Sinais , Adipogenia , Lipólise , Serina-Treonina Quinases TOR/metabolismo
20.
Phytother Res ; 36(11): 4024-4040, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36227024

RESUMO

Despite the dramatic advances in our understanding of the etiology of colorectal cancer (CRC) in recent decades, effective therapeutic strategies are still urgently needed. Oncogenic mutations in the Wnt/ß-Catenin pathway are hallmarks of CRC. Moreover, long non-coding RNAs (lncRNAs) as molecular managers are involved in the initiation, progression, and metastasis of CRC. Therefore, it is important to further explore the interaction between lncRNAs and Wnt/ß-Catenin signaling pathway for targeted therapy of CRC. Natural phytochemicals have not toxicity and can target carcinogenesis-related pathways. Growing evidences suggest that flavonoids are inversely associated with CRC risk. These bioactive compounds could target carcinogenesis pathways of CRC and reduced the side effects of anti-cancer drugs. The review systematically summarized the progress of flavonoids targeting lncRNA/Wnt axis in the investigations of CRC, which will provide a promising therapeutic approach for CRC and develop nutrition-oriented preventive strategies for CRC based on epigenetic mechanisms. In the field, more epidemiological and clinical trials are required in the future to verify feasibility of targeting lncRNA/Wnt axis by flavonoids in the therapy and prevention of CRC.


Assuntos
Neoplasias Colorretais , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , beta Catenina/metabolismo , Via de Sinalização Wnt/genética , Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...