Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 169: 107957, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38190767

RESUMO

Chemotherapy is one of the most efficient methods for treating cancer patients. Chemotherapy aims to eliminate cancer cells as thoroughly as possible. Delivering medications to patients' bodies through various methods, either oral or intravenous is part of the chemotherapy process. Different cell-kill hypotheses take into account the interactions of the expansion of the tumor volume, external drugs, and the rate of their eradication. For the control of drug usage and tumor volume, a model based smooth super-twisting control (MBSSTC) is proposed in this paper. Firstly, three nonlinear cell-kill mathematical models are considered in this work, including the log-kill, Norton-Simon, and Emax hypotheses subject to parametric uncertainties and exogenous perturbations. In accordance with clinical recommendations, the tumor volume follows a predefined trajectory after chemotherapy. Secondly, the MBSSTC is applied for the three cell-kill models to attain accurate trajectory tracking even in the presence of uncertainties and disturbances. Compared to conventional super-twisting control (STC), the non-smooth term is introduced in the proposed control to enhance the anti-disturbance capability. Finally, simulation comparisons are performed across the proposed MBSSTC, conventional STC, and proportional-integral (PI) control methods to show the effectiveness and merits of our designed control method.


Assuntos
Apoptose , Neoplasias , Humanos , Simulação por Computador , Incerteza
2.
Micromachines (Basel) ; 14(3)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36984932

RESUMO

In recent years, piezoelectric actuators, represented by inertial and inchworm actuators, have been widely applied because of their high accuracy and excellent responsiveness. Despite the development of various piezoelectric actuators, there remain some flaws in this technology. The sticking point is that the piezoelectric actuators based on the friction driving principle are prone to unwanted backward motion when outputting stepping motion. It is thus urgent to explore solutions from the perspectives of principle and structure. In this paper, a clamping-drive alternating operation piezoelectric actuator is proposed, the two feet of which are driven by two piezoelectric stacks, respectively. Due to double-foot alternate drive guide movement, backward movement is prevented in theory. By adopting the double-layer stator structure, integrated processing and assembly are facilitated. Meanwhile, a double flexible hinge mechanism is installed in the stator to prevent the drive foot from being overturned due to ineffectiveness and premature wear. In addition, the stator is equipped with the corresponding preload mechanism and clamping device. After the cycle action mechanism of one cycle and four steps is expounded, a model is established in this study to further demonstrate the principle. With the prototype produced, a series of experiments are performed. In addition, the amplitude of actuation of the stator is tested through amplitude experiment. The performance of the stator is evaluated by conducting experiments in the alternating step and single step actuation modes. Finally, the test results are analyzed to conclude that the actuator operating in either of these two modes can meet the practical needs of macro and micro actuation.

3.
ISA Trans ; 130: 152-162, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35428479

RESUMO

The temperature control process of electric heating furnace (EHF) systems is a quite difficult and changeable task owing to non-linearity, time delay, time-varying parameters, and the harsh environment of the furnace. In this paper, a robust temperature control scheme for an EHF system is developed using an adaptive active disturbance rejection control (AADRC) technique with a continuous sliding-mode based component. First, a comprehensive dynamic model is established by using convection laws, in which the EHF systems can be characterized as an uncertain second order system. Second, an adaptive extended state observer (AESO) is utilized to estimate the states of the EHF system and total disturbances, in which the observer gains are updated online by a non-linear observer bandwidth, that is as a function of the observation errors. Moreover, with the help of disturbance estimation, a novel sliding manifold is constructed with parameters adaptively adjusted by a dynamic nonlinear bandwidth function to reduce the impact of high gain problems, especially noise-sensitivity. A continuous sliding-mode (CSM) based component is also designed to handle disturbance estimation errors. Third, the stability of the closed loop system, including the proposed controller and estimator, is mathematically proved using the Lyapunov theorem. Finally, the comparative simulation results show that the proposed method has superior robustness and temperature tracking performance.

4.
IEEE Trans Pattern Anal Mach Intell ; 38(2): 350-62, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26761739

RESUMO

Identifying the underlying model in a set of data contaminated by noise and outliers is a fundamental task in computer vision. The cost function associated with such tasks is often highly complex, hence in most cases only an approximate solution is obtained by evaluating the cost function on discrete locations in the parameter (hypothesis) space. To be successful at least one hypothesis has to be in the vicinity of the solution. Due to noise hypotheses generated by minimal subsets can be far from the underlying model, even when the samples are from the said structure. In this paper we investigate the feasibility of using higher than minimal subset sampling for hypothesis generation. Our empirical studies showed that increasing the sample size beyond minimal size ( p ), in particular up to p+2, will significantly increase the probability of generating a hypothesis closer to the true model when subsets are selected from inliers. On the other hand, the probability of selecting an all inlier sample rapidly decreases with the sample size, making direct extension of existing methods unfeasible. Hence, we propose a new computationally tractable method for robust model fitting that uses higher than minimal subsets. Here, one starts from an arbitrary hypothesis (which does not need to be in the vicinity of the solution) and moves until either a structure in data is found or the process is re-initialized. The method also has the ability to identify when the algorithm has reached a hypothesis with adequate accuracy and stops appropriately, thereby saving computational time. The experimental analysis carried out using synthetic and real data shows that the proposed method is both accurate and efficient compared to the state-of-the-art robust model fitting techniques.

5.
IEEE Trans Med Imaging ; 33(2): 422-32, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24144657

RESUMO

Nonrigid image registration techniques using intensity based similarity measures are widely used in medical imaging applications. Due to high computational complexities of these techniques, particularly for volumetric images, finding appropriate registration methods to both reduce the computation burden and increase the registration accuracy has become an intensive area of research. In this paper, we propose a fast and accurate nonrigid registration method for intra-modality volumetric images. Our approach exploits the information provided by an order statistics based segmentation method, to find the important regions for registration and use an appropriate sampling scheme to target those areas and reduce the registration computation time. A unique advantage of the proposed method is its ability to identify the point of diminishing returns and stop the registration process. Our experiments on registration of end-inhale to end-exhale lung CT scan pairs, with expert annotated landmarks, show that the new method is both faster and more accurate than the state of the art sampling based techniques, particularly for registration of images with large deformations.


Assuntos
Imageamento Tridimensional/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Expiração , Humanos , Inalação , Pulmão/diagnóstico por imagem
6.
IEEE Trans Neural Netw Learn Syst ; 23(12): 1974-86, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24808151

RESUMO

In this paper, a new robust single-hidden layer feedforward network (SLFN)-based pattern classifier is developed. It is shown that the frequency spectrums of the desired feature vectors can be specified in terms of the discrete Fourier transform (DFT) technique. The input weights of the SLFN are then optimized with the regularization theory such that the error between the frequency components of the desired feature vectors and the ones of the feature vectors extracted from the outputs of the hidden layer is minimized. For the linearly separable input patterns, the hidden layer of the SLFN plays the role of removing the effects of the disturbance from the noisy input data and providing the linearly separable feature vectors for the accurate classification. However, for the nonlinearly separable input patterns, the hidden layer is capable of assigning the DFTs of all feature vectors to the desired positions in the frequency-domain such that the separability of all nonlinearly separable patterns are maximized. In addition, the output weights of the SLFN are also optimally designed so that both the empirical and the structural risks are well balanced and minimized in a noisy environment. Two simulation examples are presented to show the excellent performance and effectiveness of the proposed classification scheme.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...