Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 272: 115925, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33139096

RESUMO

Sediment remediation in eutrophic aquatic ecosystems is imperative, but effective ecological measures are scarce. A pilot-scale trial investigated sediment remediation by the addition of Tubifex tubifex. The results showed that the addition of T. tubifex accelerated sediment organic matter (OM) and nitrogen (N) loss, with averages of 7.7% and 75.1% increased loss (IL) compared to treatments without T. tubifex in the 60-day experiment, respectively. The percentages of the increased in water to the IL in sediment were only 0.6%, 0.21%, 2.1% and 6.3% for NH4+-N, NOx--N, TN and COD, respectively, at the end of the experiment. The absolute abundances of the nitrifying genes AOA and AOB; the denitrifying genes napA, nirS, nirK, cnorB and nosZ; and the anaerobic ammonia oxidation gene anammox increased 2.3- to 11.0-fold with the addition of T. tubifex. Therefore, the addition of T. tubifex is an effective strategy for sediment remediation by accelerating OM and N loss in sediment without substantially increasing the water N concentration.


Assuntos
Nitrogênio , Oligoquetos , Animais , Ecossistema , Sedimentos Geológicos , Oxirredução
2.
J Environ Manage ; 275: 111281, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32854048

RESUMO

The role of Tubifex tubifex in organic matter (OM) decomposition in aquatic ecosystems has been widely studied, but considerable uncertainties exist in terms of the effect mechanism. The effect of T. tubifex on sediment OM decomposition in laboratory-scale microcosms was quantified, and possible pathways were identified. In the first 7 days of the decomposition of OM mixed in sediment, no significant effect of T. tubifex on organic matter loss (OML) was observed for both low- and high-OM treatments; meanwhile, from day 7-60, T. tubifex addition significantly improved OML from 55.0%-57.5% to 71.8%-77.7% in the low-OM treatments and from 55.5%-56.6% to 64.1%-68.7% in the high-OM treatments. The enhanced OML observed with T. tubifex was mainly due to the promoted decomposition of refractory organic components, e.g., cellulose, hemicellulose and lignin. The proportion of refractory components in the gut of T. tubifex was significantly lower than that in the sediments (p < 0.01), indicating a pathway corresponding to the ingestion and digestion of refractory components by T. tubifex. Although T. tubifex reduced the water dissolved oxygen (DO) by increasing the water chemical oxygen demand (COD), the oxygen supply was improved by T. tubifex, and this could be affected by the increase in the relative abundance of aerobic to anaerobic bacteria in the sediments. T. tubifex significantly increased the diversity of the bacterial and fungal communities in the sediments. Moreover, the community structure of bacteria and fungi was substantially different between gut and sediment. Therefore, multiple pathways of the effect of T. tubifex on OM decomposition were established, and the results have great significance for the artificial manipulation of OM circulation using T. tubifex and the restoration of damaged aquatic ecosystems.


Assuntos
Oligoquetos , Poluentes Químicos da Água , Animais , Bactérias , Ecossistema , Sedimentos Geológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...