Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 170: 144-153, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37579686

RESUMO

The method of extracting valuable metals from spent catalysts has been developed in recent years. In this paper, the solid waste produced in the treatment of spent catalyst was studied and named iron-phosphorus residue (IPR). IPR was composed of FePO4·2H2O, Fe3(PO4)2·3H2O, Fe5(PO4)4(OH)3·2H2O, and SiO2. Appreciable quantities of Ni, Co, V, Mo, and W were detected in IPR. Based on E-pH diagrams, different atmospheric leaching strategies were used to extract valuable components from IPR. Both the HCl and NaOH leaching are appropriate for treating IPR. An in-depth investigation on HCl atmospheric leaching showed that >95% of Fe, Ni, Co, V, and Mo, 76.9% of W, and 89.3% of P were extracted efficiently and SiO2 was enriched into the leach residue, at leaching temperature of 90 ℃, leaching time of 180 min, initial HCl concentration of 5 mol/L and liquid to solid ratio of 8:1 mL/g. The leaching mechanism was discussed via XRD, XPS, and FTIR. An efficient and green process for the recovery of valuable components in IPR has been developed. This research achieves the sufficient extraction of valuable components in IPR and provides significant guidance for the management of similar solid waste.

2.
Front Mol Biosci ; 9: 1007720, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36250004

RESUMO

PUP-IT is a proximity labeling method based on the prokaryotic enzyme PafA. PafA mediates the ligation of Pup, a small peptide, to the proximal proteins. It is different from other proximity labeling methods, such as BioID and APEX, in that both the enzyme and the labeling tag are proteins, which allows for potential in vivo applications. All proximity labeling involves the genetic fusion of the proximity labeling enzyme with the bait protein. However, PafA is a 55 kDa enzyme which sometimes interferes with the bait function. In this study, we tested an alternative proximity labeling strategy, PUP-IT2, in which only a small 7 kDa protein is fused to the bait protein. We examined the activity of PUP-IT2 in vitro and in cells. We also compared it with the original PUP-IT. Finally, we applied PUP-IT2 coupled mass spectrometry to map protein-protein interactions. Overall, we established a new way to use PUP-IT2 for proximity labeling, and this method may have a broad application.

3.
Micromachines (Basel) ; 12(3)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806957

RESUMO

As the microporous structure has been widely used in the field of precision machining, at the same time, the requirements for the quality of microporous machining are continuously increasing. Water jet-guide laser processing technology (WJGL) has been gradually applied for its high machining precision. However, there are a few researches on the heat conduction process of WJGL processing metal materials. Therefore, it is of great significance to study the transient thermal effect of metal materials and the mechanism of material removal to improve the processing quality. In order to explore the heat conduction model of WJGL processing metal materials, this paper is based on the "element birth and death" technique in the finite element method, and the three-dimensional transient temperature field of four typical metal materials (titanium alloy, stainless steel, aluminum alloy, copper) and material removal model are established. Under this model, the removal mechanism of different metal materials and the influence of different process parameters on the temperature field distribution of the material are studied, and the influence of fixed-position drilling and helix drilling on the microporous morphology is compared. The results show that copper and aluminum alloys can obtain a larger depth-to-diameter ratio and a smaller hole taper. Titanium alloy and stainless steel have better hole roundness, lower hole edge temperature, and smaller thermal deformation. Hole roundness error and hole taper decrease with the increase of laser power. The roundness error of each material is reduced to within 10 µm when the laser power is 10 W, and the average hole taper is 8.73°.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...