Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(20): eadn9896, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758785

RESUMO

Hydrodeoxygenation of oxygen-rich molecules toward hydrocarbons is attractive yet challenging in the sustainable biomass upgrading. The typical supported metal catalysts often display unstable catalytic performances owing to the migration and aggregation of metal nanoparticles (NPs) into large sizes under harsh conditions. Here, we develop a crystal growth and post-synthetic etching method to construct hollow chromium terephthalate MIL-101 (named as HoMIL-101) with one layer of sandwiched Ru NPs as robust catalysts. Impressively, HoMIL-101@Ru@MIL-101 exhibits the excellent activity and stability for hydrodeoxygenation of biomass-derived levulinic acid to gamma-valerolactone under 50°C and 1-megapascal H2, and its activity is about six times of solid sandwich counterparts, outperforming the state-of-the-art heterogeneous catalysts. Control experiments and theoretical simulation clearly indicate that the enrichment of levulinic acid and H2 by nanocavity as substrate regulator enables self-regulating the backwash of both substrates toward Ru NPs sandwiched in MIL-101 shells for promoting reaction with respect to solid counterparts, thus leading to the substantially enhanced performance.

2.
Sci Adv ; 10(11): eadj7867, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478611

RESUMO

The voltage-gated ion channels, also known as ionic transistors, play substantial roles in biological systems and ion-ion selective separation. However, implementing the ultrafast switchable capabilities and polarity switching of ionic transistors remains a challenge. Here, we report a nanofluidic ionic transistor based on carbon nanotubes, which exhibits an on/off ratio of 104 at operational gate voltage as low as 1 V. By controlling the morphology of carbon nanotubes, both unipolar and ambipolar ionic transistors are realized, and their on/off ratio can be further improved by introducing an Al2O3 dielectric layer. Meanwhile, this ionic transistor enables the polarity switching between p-type and n-type by controlled surface properties of carbon nanotubes. The implementation of constructing ionic circuits based on ionic transistors is demonstrated, which enables the creation of NOT, NAND, and NOR logic gates. The ionic transistors are expected to have profound implications for low-energy consumption computing devices and brain-machine interfacing.

3.
J Am Chem Soc ; 145(32): 17786-17794, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37537964

RESUMO

Ion transport through nanoconfinement, driven by both electrical and mechanical forces, has drawn ever-increasing attention, due to its high similarity to stress-sensitive ion channels in biological systems. Previous studies have reported only pressure-induced enhancement in ion conductance in low-permeable systems such as nanotubes, nanoslits, or single nanopores. This enhancement is generally explained by the ion accumulation caused by the capacitive effect in low-permeable systems. Here, we fabricate a highly permeable COF monolayer membrane to investigate ion transport behavior driven by both electrical and mechanical forces. Our results show an anomalous conductance reduction activated by external mechanical force, which is contrary to the capacitive effect-dominated conductance enhancement observed in low-permeable nanopores or channels. Through simulations, we uncovered a distinct electrical-mechanical interplay mechanism that depends on the relative rate between the ion diffusion from the boundary layer to the membrane surface and the ion transport through the membrane. The high pore density of the COF monolayer membrane reduces the charge accumulation caused by the capacitive effect, resulting in fewer accumulated ions near the membrane surface. Additionally, the high membrane permeability greatly accelerates the dissipation of the accumulated ions under mechanical pressure, weakening the effect of the capacitive layer on the streaming current. As a result, the ions accumulated on the electrodes, rather than in the capacitive layer, dominating the streaming current and giving rise to a distinct electrical-mechanical interplay mechanism compared to that in low-permeable nanopores or channels. Our study provides new insights into the interplay between electrical and mechanical forces in ultra-permeable systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...