Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Talanta ; 273: 125919, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38513470

RESUMO

2,4-dinitroaniline (2,4DNBA), a significant hazardous chemical, is extensively used in industry and agriculture. The chemical accumulates in the environment for a long time, causing irreversible damage to the ecosystem. Currently, it is quite challenging to identify it by common analysis and detection techniques. Herein, a luminescent organic cocrystal (TCNB-8HQ) was prepared using 1,2,4,5-tetracyanobenzene (TCNB) as the electron acceptor and 8-hydroxyquinoline (8HQ) as the electron donor. The prepared TCNB-8HQ was used as a fluorescent probe with a fast and specific response to 2,4DNBA. This detection method possessed a linear range of 0.5-200 µmol/L with a detection limit as low as 0.085 µmol/L to detect 2,4DNBA in real samples with satisfactory spiking recovery. As revealed by fluorescence spectrum and UV-vis absorption spectrum, the detection mechanism involved competitive absorption between cocrystal material and 2,4DNBA. Moreover, the feasibility of the system was explored by preparing portable indicator strips for 2,4DNBA from organic cocrystal (TCNB-8HQ). This study not only provided an environmentally friendly gram-level preparation strategy to synthesize the fluorescent material but also investigated their application in chemical detection.

2.
Anal Chem ; 96(10): 4282-4289, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38469640

RESUMO

Chirality is a widespread phenomenon in nature and in living organisms and plays an important role in living systems. The sensitive discrimination of chiral molecular enantiomers remains a challenge in the fields of chemistry and biology. Establishing a simple, fast, and efficient strategy to discriminate the spatial configuration of chiral molecular enantiomers is of great significance. Chiral perovskite nanocrystals (PNCs) have attracted much attention because of their excellent optical activity. However, it is a challenge to prepare perovskites with both chiral and fluorescence properties for chiral sensing. In this work, we synthesized two chiral fluorescent perovskite nanocrystal assembly (PNA) enantiomers by using l- or d-phenylalanine (Phe) as chiral ligands. PNA exhibited good fluorescence recognition for l- and d-proline (Pro). Homochiral interaction led to fluorescence enhancement, while heterochiral interaction led to fluorescence quenching, and there is a good linear relationship between the fluorescence changing rate and l- or d-Pro concentration. Mechanism studies show that homochiral interaction-induced fluorescence enhancement is attributed to the disassembly of chiral PNA, while no disassembly of chiral PNA was found in heterochiral interaction-induced fluorescence quenching, which is attributed to the substitution of Phe on the surface of chiral PNA by heterochiral Pro. This work suggests that chiral perovskite can be used for chiral fluorescence sensing; it will inspire the development of chiral nanomaterials and chiral optical sensors.

3.
Luminescence ; 39(1): e4615, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37957886

RESUMO

By using the method of low-temperature crystallization, CsPbBr3 perovskite nanocrystals (PNCs) coated with trifluoroacetyl lysine (Tfa-Lys) and oleamine (Olam) were synthesized in aqueous solution. The structure of the CsPbBr3 PNCs was characterized by many methods, such as ultraviolet (UV)-visible absorption spectrophotometer, fluorescence spectrophotometer, transmission electron microscopy (TEM), and X-ray diffraction (XRD) pattern. The fluorescence emission of the CsPbBr3 PNCs is stable in water for about 1 day at room temperature. It was also found that the fluorescence of the PNCs could be obviously and selectively quenched after the addition of mercury ion (Hg2+ ), allowing a visual detection of Hg2+ by the naked eye under UV light illumination. The fluorescence quenching rate (I0 /I) has a good linear relationship with the addition of Hg2+ in the concentration range 0.075 to 1.5 mg/L, with a correlation coefficient (R2 ) of 0.997, and limit of detection of 0.046 mg/L. The fluorescence quenching mechanism of the PNCs was determined by the fluorescence lifetime and X-ray photoelectron spectroscopy (XPS) of the PNCs. Overall, the synthesis method for CsPbBr3 PNCs is simple and rapid, and the as-prepared PNCs are stable in water that could be conveniently used for selective detection of Hg2+ in the water environment.


Assuntos
Compostos de Cálcio , Mercúrio , Nanopartículas , Titânio , Água/química , Óxidos/química , Nanopartículas/química
4.
Kaohsiung J Med Sci ; 39(12): 1190-1199, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37702441

RESUMO

This study aimed to explore the role and mechanism of DYRK1a regulating ferroptosis of cardiomyocytes during myocardial ischemia-reperfusion injury (MIRI). H9c2 cells treated with oxygen-glucose deprivation/reoxygenation (OGD/R) were used as MIRI cell models and transfected with sh-DYRK1a or/and erastin. Cell viability, apoptosis, and DYRK1a mRNA/protein expression were measured accordingly. The levels of reactive oxygen species (ROS), iron, malondialdehyde (MDA), and glutathione (GSH) were determined. The expression of ferroptosis-related proteins (GPX4, SLC7A11, ACSL4, and TFR1) was detected using western blotting. The MIRI rat model was established to explore the possible role of DYRK1a suppression in cell injury and ferroptosis. OGD/R cells showed elevated mRNA and protein expression for DYRK1a. OGD/R cells transfected with sh-DYRK1a showed elevated cell viability, GSH content, increased GPX4 and SLC7A11 expression, suppressed iron content, MDA, ROS, ACSL4, and TFR1 expression, and reduced apoptosis rate, whereas co-transfection of sh-DYRK1a with erastin reversed the attenuation of sh-DYRK1a on MIRI. The suppressive effect of sh-DYRK1a on MI/R injury was confirmed in an MIRI rat model. DYRK1a mediates ferroptosis of cardiomyocytes to deteriorate MIRI progression.


Assuntos
Ferroptose , Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Animais , Ratos , Ferroptose/genética , Glucose , Glutationa , Ferro , Traumatismo por Reperfusão Miocárdica/genética , Miócitos Cardíacos , Oxigênio , Espécies Reativas de Oxigênio , RNA Mensageiro/genética
5.
World J Gastroenterol ; 29(34): 5054-5074, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37753369

RESUMO

BACKGROUND: Di (2-ethylhexyl) phthalate (DEHP) is a common plasticizer known to cause liver injury. Green tea is reported to exert therapeutic effects on heavy metal exposure-induced organ damage. However, limited studies have examined the therapeutic effects of green tea polyphenols (GTPs) on DEHP-induced liver damage. AIM: To evaluate the molecular mechanism underlying the therapeutic effects of GTPs on DEHP-induced liver damage. METHODS: C57BL/6J mice were divided into the following five groups: Control, model [DEHP (1500 mg/kg bodyweight)], treatment [DEHP (1500 mg/kg bodyweight) + GTP (70 mg/kg bodyweight), oil, and GTP (70 mg/kg bodyweight)] groups. After 8 wk, the liver function, blood lipid profile, and liver histopathology were examined. Differentially expressed micro RNAs (miRNAs) and mRNAs in the liver tissues were examined using high-throughput sequencing. Additionally, functional enrichment analysis and immune infiltration prediction were performed. The miRNA-mRNA regulatory axis was elucidated using the starBase database. Protein expression was evaluated using immunohistochemistry. RESULTS: GTPs alleviated DHEP-induced liver dysfunction, blood lipid dysregulation, fatty liver disease, liver fibrosis, and mitochondrial and endoplasmic reticulum lesions in mice. The infiltration of macrophages, mast cells, and natural killer cells varied between the model and treatment groups. mmu-miR-141-3p (a differentially expressed miRNA), Zcchc24 (a differentially expressed mRNA), and Zcchc24 (a differentially expressed protein) constituted the miRNA-mRNA-protein regulatory axis involved in mediating the therapeutic effects of GTPs on DEHP-induced liver damage in mice. CONCLUSION: This study demonstrated that GTPs mitigate DEHP-induced liver dysfunction, blood lipid dysregulation, fatty liver disease, and partial liver fibrosis, and regulate immune cell infiltration. Additionally, an important miRNA-mRNA-protein molecular regulatory axis involved in mediating the therapeutic effects of GTPs on DEHP-induced liver damage was elucidated.

6.
ACS Appl Mater Interfaces ; 15(35): 41977-41991, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37606315

RESUMO

Lanthanide metal-organic frameworks (Ln-MOFs) with exceptional optical performance and structural diversity offer a unique platform for the development of luminescent materials. However, Ln-MOFs often suffer from luminescence quenching by high-vibrating oscillators, especially in aqueous solution. Thus, multiple strategies have been adopted to improve the luminescence of Ln3+. Anomalous research about water-induced lanthanide luminescence enhancement of Ln-MOFs is in the primary stage. Here, two Eu-based metal-organic framework (Eu-MOF) isomers named QXBA-Eu-1 and QXBA-Eu-2 were constructed by using the same ligand under different solvent thermal conditions, which exhibited distinctive water- and methanol-boosting emission behaviors. As for QXBA-Eu-1, water and methanol molecules replaced the free N,N-dimethylacetamide (DMA) molecules in the framework, repressed the rotation or libration suppression of the QXBA linker, and formed hydrogen bonds with the coordinated water molecules, which suppressed the O-H high-energy vibrations, reduced nonradiative transitions, stabilized the T1 state, and facilitated the intersystem crossing (ISC) process. For QXBA-Eu-2, water molecules tended to replace the coordinated DMA ligands, which altered the S1 and T1 energy levels of the ligand and facilitated the ligand-to-metal energy transfer (LMET) process and strengthened the luminescence of Eu3+. Importantly, free solvent molecules and the hydroxylation of Eu3+ centers also restrained the rotation or libration of the QXBA linker, by which the nonradiative transition was further inhibited and the lanthanide luminescence enhanced. Thus, this work not only opened an unprecedented path to enhance lanthanide luminescence in aqueous solution but also expanded its application scope.

7.
Cell Rep ; 42(7): 112779, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37436898

RESUMO

Retinal pigment epithelium (RPE) dysfunction and choroidal neovascularization (CNV) are predominant features of age-related macular degeneration (AMD), with an unclear mechanism. Herein, we show that RNA demethylase α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5) is up-regulated in AMD. In RPE cells, ALKBH5 overexpression associates with depolarization, oxidative stress, disturbed autophagy, irregular lipid homeostasis, and elevated VEGF-A secretion, which subsequently promotes proliferation, migration, and tube formation of vascular endothelial cells. Consistently, ALKBH5 overexpression in mice RPE correlates with various pathological phenotypes, including visual impairments, RPE anomalies, choroidal neovascularization (CNV), and interrupted retinal homeostasis. Mechanistically, ALKBH5 regulates retinal features through its demethylation activity. It targets PIK3C2B and regulates the AKT/mTOR signaling pathway with YTHDF2 as the N6-methyladenosine reader. IOX1, an ALKBH5 inhibitor, suppresses hypoxia-induced RPE dysfunction and CNV progression. Collectively, we demonstrate that ALKBH5 induces RPE dysfunction and CNV progression in AMD via PIK3C2B-mediated activation of the AKT/mTOR pathway. Pharmacological inhibitors of ALKBH5, like IOX1, are promising therapeutic options for AMD.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Neovascularização de Coroide , Degeneração Macular , Animais , Camundongos , Neovascularização de Coroide/metabolismo , Células Endoteliais/metabolismo , Degeneração Macular/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/metabolismo
8.
ACS Appl Mater Interfaces ; 15(18): 22590-22601, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37098047

RESUMO

The concentration of vanillymandelic acid (VMA) in urine is closely related with pheochromocytoma diagnosis. Thus, it is essential to develop more accurate and convenient fluorescence sensing strategies toward VMA. Until now, the design of double ratiometric detection methods for VMA was still in the unexplored stage. In this work, novel Ln3+-based metal-organic frameworks (QBA-Eu and QBA-Gd0.875Eu0.125) possessing dual emission peaks was fabricated successfully, which served as isomers of YNU-1 and exhibited more excellent water stability in fluorescence and structure than the ones of YNU-1. The formation of the complex between QBA ligands and VMA molecules via hydrogen bonds within QBA-Eu frameworks produced a new emission band centered at 450 nm and resulted in the decline of monomer emission intensity for QBA at 390 nm. Owing to the reduced energy gap [ΔE (S1 - T1)], the antenna effect was hampered and luminescence of Eu3+ ions also decreased. The developed double ratiometric (I615nm/I475nm, I390nm/I475nm) fluorescence sensors based on QBA-Eu and QBA-Gd0.875Eu0.125 possessed the advantages of fast response (4 min), low detection limits (0.58 and 0.51; 0.22 and 0.31 µM), and wide linear ranges (2-100 and 2-80 µM), which met the requirements of pheochromocytoma diagnosis. We also applied them to determine VMA in an artificial urine sample and diluted human urine sample and obtained satisfactory results. They will become prospective fluorescence sensing platforms for VMA.


Assuntos
Neoplasias das Glândulas Suprarrenais , Elementos da Série dos Lantanídeos , Estruturas Metalorgânicas , Feocromocitoma , Humanos , Elementos da Série dos Lantanídeos/química , Estruturas Metalorgânicas/química , Corantes Fluorescentes/química , Estudos Prospectivos , Espectrometria de Fluorescência/métodos
9.
Curr Med Sci ; 43(2): 274-283, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36913109

RESUMO

OBJECTIVE: Intrauterine growth restriction followed by postnatal catch-up growth (CG-IUGR) increases the risk of insulin resistance-related diseases. Low-density lipoprotein receptor-related protein 6 (LRP6) plays a substantial role in glucose metabolism. However, whether LRP6 is involved in the insulin resistance of CG-IUGR is unclear. This study aimed to explore the role of LRP6 in insulin signaling in response to CG-IUGR. METHODS: The CG-IUGR rat model was established via a maternal gestational nutritional restriction followed by postnatal litter size reduction. The mRNA and protein expression of the components in the insulin pathway, LRP6/ß-catenin and mammalian target of rapamycin (mTOR)/S6 kinase (S6K) signaling, was determined. Liver tissues were immunostained for the expression of LRP6 and ß-catenin. LRP6 was overexpressed or silenced in primary hepatocytes to explore its role in insulin signaling. RESULTS: Compared with the control rats, CG-IUGR rats showed higher homeostasis model assessment for insulin resistance (HOMA-IR) index and fasting insulin level, decreased insulin signaling, reduced mTOR/S6K/ insulin receptor substrate-1 (IRS-1) serine307 activity, and decreased LRP6/ß-catenin in the liver tissue. The knockdown of LRP6 in hepatocytes from appropriate-for-gestational-age (AGA) rats led to reductions in insulin receptor (IR) signaling and mTOR/S6K/IRS-1 serine307 activity. In contrast, LRP6 overexpression in hepatocytes of CG-IUGR rats resulted in elevated IR signaling and mTOR/S6K/IRS-1 serine307 activity. CONCLUSION: LRP6 regulated the insulin signaling in the CG-IUGR rats via two distinct pathways, IR and mTOR-S6K signaling. LRP6 may be a potential therapeutic target for insulin resistance in CG-IUGR individuals.


Assuntos
Retardo do Crescimento Fetal , Resistência à Insulina , Insulina , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Proteínas Quinases S6 Ribossômicas , Animais , Feminino , Humanos , Ratos , beta Catenina/genética , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Insulina/metabolismo , Resistência à Insulina/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Receptor de Insulina/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
10.
Cell Rep ; 41(7): 111671, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36384115

RESUMO

Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss in the elderly population with unclear pathogenic mechanism. Herein, we detect downregulated circSPECC1 expression in retinal pigment epithelium (RPE) of AMD patients. In RPE cells, circSPECC1 insufficiency leads to oxidative stress-induced ferroptosis, depolarization, and irregular lipid metabolism. Consistently, in mice, circSPECC1 deficiency induces visual impairments and RPE anomalies and interrupts retinal homeostasis. Mechanically, nuclear export of circSPECC1 transcript depends on its N6-methyladenosine (m6A) level with YTHDC1 as the reader. CircSPECC1 directly sponges miR-145-5p to block its interaction with CDKN1A. Overexpressing miR-145-5p aggravates RPE dysfunctions, mimicking circSPECC1 silencing effects. Retinal phenotypes induced by circSPECC1 insufficiency are alleviated by miR-145-5p inhibition and are aggravated by miR-145-5p overexpression. Collectively, circSPECC1, mediated by m6A modification and sponging miR-145-5p, resists oxidative stress injuries and maintains lipid metabolism in RPE. Pharmacological supplementation of circSPECC1 is a promising therapeutic option for atrophic retinopathies like AMD.


Assuntos
Degeneração Macular , MicroRNAs , Estresse Oxidativo , RNA Circular , Idoso , Animais , Humanos , Camundongos , Homeostase , Degeneração Macular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Oxidativo/genética , Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , RNA Circular/genética
11.
Inorg Chem ; 61(43): 17185-17195, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36263654

RESUMO

The establishment of a reliable and sensitive method for the detection of flavonoids, such as kaempferol (Kae) and quercetin (Que), is important and challenging in food chemistry and pharmacology because numerous structural analogues may interfere with the detection. Until now, designing an efficient switch-on fluorescence sensing strategy for Kae and Que was still in the unachievable stage. In this work, a switch-on near-infrared (NIR) luminescence sensing assay for Kae and Que was fabricated based on a metal-organic framework (MOF) called IQBA-Yb for the first time. The fluorescence enhancing mechanism was that analytes served as additional "antenna" of Yb3+, leading to the efficient switch-on NIR emission under excitation at 467 nm. Meanwhile, the combination results of experiment and theoretical calculation revealed that there existed hydrogen bonds between Kae, Que, and the MOF skeleton, further promoting the energy transfer between the analyte and Yb3+ and facilitating fluorescence enhancement response. The developed probe possessed excellent sensing capability for Kae and Que, accompanied by a wide linear range (0.04-70, 0.06-90 µM), low detection limit (0.01, 0.06 µM), and short response time (20 min, 6 min), which was used to determine the Kae and Que contents in Green Lake and eatable Que samples with satisfactory results.


Assuntos
Estruturas Metalorgânicas , Quercetina , Quercetina/química , Quempferóis/química , Luminescência , Flavonoides/química
12.
Oxid Med Cell Longev ; 2022: 5009289, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36193085

RESUMO

Sacubitril valsartan (lcz696) has been demonstrated as a substitute for angiotensin-converting enzyme inhibitors and angiotensin receptor blockers for the treatment of heart failure. This research is aimed at examining the effects of lcz696 and its target molecules on myocardial infarction (MI). A rat model of MI was induced by left anterior descending artery ligation and treated with lcz696. Lcz696 treatment significantly reduced cardiac injury and heart failure, restored the left ventricular fractional shortening and ejection fraction, and reduced oxidative stress and inflammatory responses in rat myocardium. By analyzing the heart failure-related GSE47495 dataset and performing gene ontology (GO) functional enrichment analysis, we obtained histone lysine methyltransferase SUV39H1 and secreted phosphoprotein 1 (SPP1) as two molecules implicated in the oxidative stress and inflammation processes. An elevation of SUV39H1 whereas a decline of SPP1 were detected in cardiac tissues after lcz696 treatment. Enrichments of SUV39H1 and H3K9me3 at the SPP1 promoter were identified by chromatin immunoprecipitation assay. SUV39H1 catalyzed H3K9me3 modification to suppress the expression of SPP1. Preconditioning of SUV39H1 silencing blocked the protective roles of lcz696, but SPP1 silencing alleviated the myocardial injury. In conclusion, this study demonstrates that lcz696 enhances cardiac function and alleviates MI in rats through a SUV39H1/SPP1 axis.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Aminobutiratos , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/uso terapêutico , Insuficiência Cardíaca/metabolismo , Histona-Lisina N-Metiltransferase , Metiltransferases/genética , Metiltransferases/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Neprilisina/metabolismo , Osteopontina , Ratos , Proteínas Repressoras , Volume Sistólico , Tetrazóis/farmacologia , Tetrazóis/uso terapêutico , Valsartana/farmacologia , Valsartana/uso terapêutico
13.
Biomed Environ Sci ; 35(1): 4-12, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35078557

RESUMO

OBJECTIVE: The association between neutrophil-to-lymphocyte ratio (NLR) with subclinical macrovascular and microvascular diseases has been less investigated. We sought to examine the association between NLR and new-onset subclinical macrovascular and microvascular abnormalities in the Chinese population. METHODS: From a community cohort, we included 6,430 adults aged ≥ 40 years without subclinical macrovascular and microvascular diseases at baseline. We measured subclinical macrovascular and microvascular abnormalities separately using the ankle-brachial index (ABI), brachial-ankle pulse wave velocity (baPWV), and albuminuria. RESULTS: During a mean follow-up of 4.3 years, 110 participants developed incident abnormal ABI, 746 participants developed incident elevated baPWV, and 503 participants developed incident albuminuria. Poisson regression analysis indicated that NLR was significantly associated with an increased risk of new-onset abnormal ABI, elevated baPWV, and albuminuria. Compared to overweight/obese participants, we found a much stronger association between NLR and subclinical vascular abnormalities in participants with normal weight. Furthermore, we found an interaction between the NLR and body mass index (BMI) on the risk of new-onset abnormal ABI ( P for interaction: 0.01). CONCLUSION: NLR was associated with subclinical macrovascular and microvascular diseases in the Chinese population. Furthermore, in participants with normal weight, the association between NLR and subclinical vascular abnormalities was much stronger.


Assuntos
Linfócitos/citologia , Neutrófilos/citologia , Doenças Vasculares/etiologia , Adulto , Idoso , Índice Tornozelo-Braço , Índice de Massa Corporal , China/epidemiologia , Estudos de Coortes , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Distribuição de Poisson , Estudos Prospectivos , Doenças Vasculares/sangue , Doenças Vasculares/epidemiologia
14.
Kaohsiung J Med Sci ; 38(1): 6-17, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34431595

RESUMO

Sepsis is characterized by a severe inflammatory response throughout the whole body and can induce acute kidney injury (AKI). This research aimed to investigate the regulatory mechanisms underlying miR-155-5p in sepsis-induced AKI. CLP-treated mice were used as an in vivo model of sepsis-induced AKI, and LPS-treated HK-2 and TCMK-1 cells were used as in vitro models. Bioinformatics analyses and mechanistic assays were utilized to reveal the relationships between molecules. H&E staining was used to reveal morphological changes in kidney tissues. ELISAs were conducted to detect the concentrations of proinflammatory cytokines. We discovered that miR-155-5p was prominently upregulated in sepsis-induced AKI in vivo and in vitro. MiR-155-5p inhibition alleviated kidney injury in mice. Moreover, WWC1 served as a direct target of miR-155-5p and was negatively regulated by miR-155-5p. WWC1 upregulation inhibited the productions of inflammatory cytokines and suppressed apoptosis in vivo and in vitro. In addition, rescue assays demonstrated that WWC1 knockdown counteracted the inhibitory effect of anti-miR-155-5p on inflammation and apoptosis. Moreover, miR-155-5p could bind to XIST. XIST expression was downregulated in LPS-stimulated HK-2 and TCMK-1 cells. XIST could negatively regulate miR-155-5p expression and positively regulate WWC1 expression. Rescue assays revealed that miR-155-5p overexpression significantly reversed the suppressive effects of XIST upregulation on inflammation and apoptosis. In conclusion, our study revealed that the XIST/miR-155-5p/WWC1 axis modulated sepsis-induced AKI progression, providing promising insight into therapeutic targets for sepsis-induced AKI.


Assuntos
Injúria Renal Aguda/metabolismo , Apoptose/genética , RNA Longo não Codificante/genética , Sepse/complicações , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/genética , Animais , Citocinas/metabolismo , Regulação para Baixo , Inflamação/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , MicroRNAs/genética , Fosfoproteínas/metabolismo , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/metabolismo , Sepse/genética , Regulação para Cima
15.
Talanta ; 238(Pt 2): 123030, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801893

RESUMO

The development of analytical method for selective and sensitive detection of gossypol (Gsp), an extraction from the cotton plants, is important but still challenging in food safety and medical field. Herein, we reported a turn-on near infrared (NIR) fluorescence detection strategy for Gsp based on a metal-organic framework (MOF), QBA-Yb, which was prepared from 4,4'-(quinolone-5, 8-diyl) benzoate with Yb(NO3)3·5H2O by solvothermal synthesis. The Gsp acted as another "antenna" to sensitize the luminescence of Yb3+, leading to the turn-on NIR emission upon 467 nm excitation. As Gsp concentration increased, the NIR emission at 973 nm enhanced gradually, thus enabling highly sensitive Gsp detection in a turn-on way. The experiment and theoretical calculation results revealed the presence of strong hydrogen bonds between Gsp molecules and the MOF skeleton. The developed QBA-Yb probe showed excellent characteristics for detection of Gsp molecules, accompanied by wide linear range (5-160 µg/mL), low detection limit (0.65 µg/mL) and short response time (within 10 min). We have further demonstrated that the QBA-Yb probe was successfully applied for the determination of Gsp in real samples of cottonseeds.


Assuntos
Gossipol , Estruturas Metalorgânicas , Fluorescência , Luminescência
16.
Inorg Chem ; 60(24): 18870-18878, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34855375

RESUMO

Photochromic materials are constructed with molecules accompanied by structural change after triggering by light, which are of great importance and necessity for various applications. However, because of space-confinement effects, molecule stacking of these photoresponsive chromophores within coordination polymers (CPs) always results in an efficiency decrement and a response delay, and this phenomenon will lead to a poor photochromic property. Herein, a CP (named CIT-E) with a 3-fold-interpenetrating network structure, which was prepared with (Z)-1,2-diphenyl-1,2-bis[4-(pyridin-3-ylmethoxy)phenyl]ethene (1Z) and a CuI cluster, showed fast reversible photochromic behavior. Under UV-light illumination, the color of CIT-Z changed from pale yellow to reddish brown. With the illumination of green light, the polymer could return to its initial color within 10 s. To reveal the mechanism of reversible photochromic behavior of CIT-Z, single-crystal structures of each color state were fully studied, and other scientific study methods were also used, such as time-dependent density functional theory calculation and control experiments. It was found that, with light illumination, this behavior of CIT-Z was the result of a ligand-to-metal charge-transfer process, and this process was triggered by subtle molecular conformation variation of tetraphenylethylene. It should be noted that CIT-Z has high thermal and chemical stability, which are excellent advantages as smart photoresponsive materials. As a proof of concept, a uniform thin film with such a fascinating photochromic property allows applications in invisible anticounterfeiting and dynamic optical data storage. Overall, the present study opens up a new avenue toward reversible photochromic materials.

17.
Am J Emerg Med ; 44: 366-372, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32389399

RESUMO

OBJECTIVE: To evaluate the prognostic value of routine coagulation tests for patients with heat stroke. METHODS: This was a multi-center retrospective study. Patients who arrived at the hospital <24 h after the onset of Heat Stroke (HS) were included. The routine coagulation variables were detected within 24 h after the onset, including the lowest platelet count (PLC). RESULTS: 60-day mortality rate was 20.9%. The median Prothrombin Time-International Normalized Ratio (PT-INR) of the non-surviving patients was significantly higher than that of the survivors (P < 0.01). The median Activated Partial Thromboplastin Time (APTT) in non-surviving patients was significantly higher than in the surviving patients (P < 0.01). A Cox regression analysis revealed that 60-day mortality was associated with PT-INR (P = 0.032) and APTT (P = 0.004). The optimal PT-INR point for predicting 60-day mortality rate was 1.7. The optimal APTT point for predicting 60-day mortality was 51.45. Patients with increased PT-INR (≥1.7) levels had, overall, a significantly reduced survival time (P < 0.01). Patients with elevated APTT (≥51.45) also had a decrease in survival time (P < 0.01). The prognostic scoring, with increased PT-INR (≥1.7) and prolonged APTT (≥51.45) at one point each, was also demonstrated to be useful in predicting 60-day mortality. Patients whose temperature fell to 38.9 °C within 30 min had significantly lower levels of PT-INR and APTT within 24 h than those who took longer to cool down. CONCLUSIONS: A prolonged APTT and elevated PT-INR within 24 h are independent prognostic factors of 60-day mortality in HS.


Assuntos
Testes de Coagulação Sanguínea , Golpe de Calor/sangue , Golpe de Calor/mortalidade , Adulto , China/epidemiologia , Feminino , Humanos , Coeficiente Internacional Normatizado , Masculino , Tempo de Tromboplastina Parcial , Prognóstico , Tempo de Protrombina , Estudos Retrospectivos , Taxa de Sobrevida
18.
Exp Ther Med ; 20(3): 2863-2869, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32765783

RESUMO

Using a series of DNA methylation analysis, pathogenesis was investigated to identify the specific DNA methylation markers for diagnosing atherosclerosis. Firstly, with the chip platform of Illumina Human Methylation 450 BeadChip, a total of 1,458 CpGs, covering 971 differential methylated genes were extracted with stringent filtering criteria. Secondly, hierarchical clustering as a heat map was used to check on the dependability of differential methylated genes. Thirdly, the related GO terms and pathways were enriched by up- and down-methylated genes, respectively, after verifying the capacity of these differential methylated genes to distinguish between atherosclerosis and healthy controls. In total, 971 differential DNA methylated genes were identified (1,458 CpGs). Several important function regions were also identified, including cell adhesion, PI3K-Akt signaling pathway and transcription from RNA polymerase II promoter. This study indicates that patients with atherosclerosis have high levels of DNA methylation, which is promising for early diagnosis and treatment of atherosclerosis.

19.
Inorg Chem ; 59(9): 6508-6517, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32315165

RESUMO

A series of silver coordination complexes (CCs) have been synthesized through self-assembly of five pyridine-substituted tetraphenylethylene stereoisomer ligands with silver ions (named Ag-TPE-2by-1-E, Ag-TPE-2by-2-E, Ag-TPE-2by-2-Z, Ag-TPE-2by-3-E, and Ag-TPE-2by-3-Z). These silver CCs show distinct topologies including beaded chain frameworks, linear structures, and discrete metallacycles. The single-crystal analysis results reveal the critical role of the space distribution of the coordination site and stereoisomer ligands in controlling the silver CCs' geometry configuration and modulating the optical properties. Luminescent investigations revealed that Ag-TPE-2by-2-E, Ag-TPE-2by-2-Z, Ag-TPE-2by-3-E, and Ag-TPE-2by-3-Z possess obvious mechanocharomic behaviors, which can be achieved several reversible cycles through repeated grinding and methanol soaking processes. However, the Ag-TPE-2by-1-E showed tenacious stability toward mechanical grinding and temperature. Thus, these silver CCs provide a good platform to investigate the influence of the space distribution of the coordination site of ligands on their geometry and mechanocharomic properties.

20.
Mikrochim Acta ; 187(2): 106, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31916054

RESUMO

A hydrothermal method was applied to the synthesis of green-emitting gold nanoclusters (Au NCs) which are shown to be viable fluorescent probes for 4-nitrophenol (4-NP). The Au NCs were prepared by using thiol-ß-cyclodextrin as a template. Under 365 nm excitation, their green fluorescence has a peak at 502 nm, with a narrow emission bandwidth of only 30 nm. The fluorescence and composition of the Au NCs were characterized and the mechanism of the nanocluster formation is discussed. Due to host-guest recognition of ß-cyclodextrin and 4-NP, fluorescence is quenched. The probe can selectively recognize 4-NP among other nitrophenols. A fluorometric and colorimetric assay was developed for 4-NP that works in the 0.1 to 100 µM concentration range and has a detection limit of 90 nM (at 3σ). Graphical abstractSchematic representation of hydrothermal synthesis of green-emitting gold nanoclusters using thiol-ß-cyclodextrin. Fluorescence is quenched and the absorption of the nanoclusters is increases in the presence of 4-nitrophenol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...