Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Musculoskelet Disord ; 19(1): 200, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-30037348

RESUMO

BACKGROUND: Global postural re-education (GPR) is a physiotherapy treatment approach for pediatric idiopathic scoliosis (IS), where the physiotherapist qualitatively assesses scoliotic curvature reduction potential (with a manual correction) and patient's ability to self-correct (self-correction). To the author's knowledge, there are no studies regarding GPR applied to IS, hence there is a need to better understand the biomechanics of GPR curve reduction postures. The objective was to biomechanically and quantitatively evaluate those two re-education corrections using a computer model combined with experimental testing. METHODS: Finite elements models of 16 patients with IS (10.5-15.4 years old, average Cobb angle of 33°) where built from surface scans and 3D radiographic reconstructions taken in normal standing and self-corrected postures. The forces applied with the therapist's hands over the trunk during manual correction were recorded and used in the FEM to simulate this posture. Self-correction was simulated by moving the thoracic and lumbar apical vertebrae from their presenting position to their self-corrected position as seen on radiographs. A stiffness index was defined for each posture as the global force required to stay in the posture divided by the thoracic curve reduction (force/Cobb angle reduction). RESULTS: The average force applied by the therapist during manual correction was 31 N and resulted in a simulated average reduction of 26% (p < 0.05), while kyphosis slightly increased and lordosis remained unchanged. The actual self-correction reduced the thoracic curve by an average of 33% (p < 0.05), while the lumbar curve remained unchanged. The thoracic kyphosis and lumbar lordosis were reduced on average by 6° and 5° (p < 0.05). Self-correction simulations correlated with actual self-correction (r = 0.9). CONCLUSIONS: This study allowed quantification of thoracic curve reducibility obtained by external forces applications as well as patient's capacity to self-correct their posture, two corrections commonly used in the GPR approach.


Assuntos
Simulação por Computador , Educação de Pacientes como Assunto/métodos , Modalidades de Fisioterapia , Postura/fisiologia , Escoliose/reabilitação , Autocuidado/métodos , Adolescente , Fenômenos Biomecânicos/fisiologia , Criança , Feminino , Humanos , Masculino , Escoliose/diagnóstico por imagem , Resultado do Tratamento
2.
Clin Biomech (Bristol, Avon) ; 54: 86-91, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29571032

RESUMO

BACKGROUND: Orthopedic braces made by Computer-Aided Design and Manufacturing and numerical simulation were shown to improve spinal deformities correction in adolescent idiopathic scoliosis while using less material. Simulations with BraceSim (Rodin4D, Groupe Lagarrigue, Bordeaux, France) require a sagittal radiograph, not always available. The objective was to develop an innovative modeling method based on a single coronal radiograph and surface topography, and assess the effectiveness of braces designed with this approach. METHODS: With a patient coronal radiograph and a surface topography, the developed method allowed the 3D reconstruction of the spine, rib cage and pelvis using geometric models from a database and a free form deformation technique. The resulting 3D reconstruction converted into a finite element model was used to design and simulate the correction of a brace. The developed method was tested with data from ten scoliosis cases. The simulated correction was compared to analogous simulations performed with a 3D reconstruction built using two radiographs and surface topography (validated gold standard reference). FINDINGS: There was an average difference of 1.4°/1.7° for the thoracic/lumbar Cobb angle, and 2.6°/5.5° for the kyphosis/lordosis between the developed reconstruction method and the reference. The average difference of the simulated correction was 2.8°/2.4° for the thoracic/lumbar Cobb angles and 3.5°/5.4° the kyphosis/lordosis. INTERPRETATION: This study showed the feasibility to design and simulate brace corrections based on a new modeling method with a single coronal radiograph and surface topography. This innovative method could be used to improve brace designs, at a lesser radiation dose for the patient.


Assuntos
Braquetes , Desenho Assistido por Computador , Análise de Elementos Finitos , Escoliose/diagnóstico por imagem , Escoliose/terapia , Adolescente , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Região Lombossacral , Pelve , Radiografia , Coluna Vertebral
3.
Med Biol Eng Comput ; 55(4): 549-560, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27314506

RESUMO

Lower limb deformation in children with osteogenesis imperfecta (OI) impairs ambulation and may lead to fracture. Corrective surgery is based on empirical assessment criteria. The objective was to develop a reconstruction method of the tibia for OI patients that could be used as input of a comprehensive finite element model to assess fracture risks. Data were obtained from three children with OI and tibia deformities. Four pQCT scans were registered to biplanar radiographs, and a template mesh was deformed to fit the bone outline. Cortical bone thickness was computed. Sensitivity of the model to missing slices of pQCT was assessed by calculating maximal von Mises stress for a vertical hopping load case. Sensitivity of the model to ±5 % of cortical thickness measurements was assessed by calculating loads at fracture. Difference between the mesh contour and bone outline on the radiographs was below 1 mm. Removal of one pQCT slice increased maximal von Mises stress by up to 10 %. Simulated ±5 % variation of cortical bone thickness leads to variations of up to 4.1 % on predicted fracture loads. Using clinically available tibia imaging from children with OI, the developed reconstruction method allowed the building of patient-specific finite element models.


Assuntos
Modelos Anatômicos , Osteogênese Imperfeita/diagnóstico por imagem , Osteogênese Imperfeita/fisiopatologia , Medição de Risco/métodos , Fraturas da Tíbia/etiologia , Adolescente , Criança , Feminino , Análise de Elementos Finitos , Humanos , Masculino , Osteogênese Imperfeita/complicações , Osteogênese Imperfeita/tratamento farmacológico , Medicina de Precisão/métodos
4.
Proc Inst Mech Eng H ; 227(3): 209-20, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23662336

RESUMO

Finite element models of orthopedic implants such as hip resurfacing femoral components usually rely on contact elements to model the load-bearing interfaces that connect bone, cement and implant. However, contact elements cannot simulate progressive degradation of bone-cement interfaces or osseointegration. A new interface element is developed to alleviate these shortcomings. This element is capable of simulating the nonlinear progression of bone-cement interface debonding or bone-implant interface osseointegration, based on mechanical stimuli in normal and tangential directions. The new element is applied to a hip resurfacing femoral component with a stem made of a novel biomimetic composite material. Three load cases are applied sequentially to simulate the 6-month period required for osseointegration of the stem. The effect of interdigitation depth of the bone-cement interface is found to be negligible, with only minor variations of micromotions. Numerical results show that the biomimetic stem progressively osseointegrates (alpha averages 0.7 on the stem surface, with spot-welds) and that bone-stem micromotions decrease below 10 microm. Osseointegration also changes the load path within the femoral bone: a decrease of 300 microepsilon was observed in the femoral head, and the inferomedial part of the femoral neck showed a slight increase of 165 microepsilon. There was also increased stress in the implant stem (from 7 to 11 MPa after osseointegration), indicating that part of the load is supported through the stem. The use of the new osseointegratable interface element has shown the osseointegration potential of the biomimetic stem. Its ability to model partially osseointegrated interfaces based on the mechanical conditions at the interface means that the new element could be used to study load transfer and osseointegration patterns on other models of uncemented hip resurfacing femoral components.


Assuntos
Cimentos Ósseos , Cabeça do Fêmur/fisiologia , Prótese de Quadril , Modelos Biológicos , Osseointegração/fisiologia , Fenômenos Biomecânicos , Remodelação Óssea/fisiologia , Cabeça do Fêmur/cirurgia , Análise de Elementos Finitos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...