Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunother ; 32(2): 169-80, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19238016

RESUMO

On the basis of promising preclinical data demonstrating the eradication of systemic B-cell malignancies by CD19-targeted T lymphocytes in vivo in severe combined immunodeficient-beige mouse models, we are launching phase I clinical trials in patients with chronic lymphocytic leukemia (CLL) and acute lymphoblastic leukemia. We present here the validation of the bioprocess which we developed for the production and expansion of clinical grade autologous T cells derived from patients with CLL. We demonstrate that T cells genetically modified with a replication-defective gammaretroviral vector derived from the Moloney murine leukemia virus encoding a chimeric antigen receptor (CAR) targeted to CD19 (1928z) can be expanded with Dynabeads CD3/CD28. This bioprocess allows us to generate clinical doses of 1928z+ T cells in approximately 2 to 3 weeks in a large-scale semiclosed culture system using the Wave Bioreactor. These 1928z+ T cells remain biologically functional not only in vitro but also in severe combined immunodeficient-beige mice bearing disseminated tumors. The validation requirements in terms of T-cell expansion, T-cell transduction with the 1928z CAR, biologic activity, quality control testing, and release criteria were met for all 4 validation runs using apheresis products from patients with CLL. Additionally, after expansion of the T cells, the diversity of the skewed Vbeta T-cell receptor repertoire was significantly restored. This validated process will be used in phase I clinical trials in patients with chemorefractory CLL and in patients with relapsed acute lymphoblastic leukemia. It can also be adapted for other clinical trials involving the expansion and transduction of patient or donor T cells using any CAR or T-cell receptor.


Assuntos
Antígenos CD19/imunologia , Imunoterapia Adotiva , Leucemia Linfocítica Crônica de Células B/terapia , Receptores de Antígenos/genética , Linfócitos T Citotóxicos/imunologia , Animais , Reatores Biológicos , Técnicas de Cultura de Células , Ensaios Clínicos como Assunto , Engenharia Genética , Humanos , Leucemia Linfocítica Crônica de Células B/imunologia , Camundongos , Receptores de Antígenos/imunologia , Linfócitos T Citotóxicos/transplante , Transdução Genética
2.
EMBO J ; 22(16): 4132-42, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12912912

RESUMO

The execution of apoptosis depends on the hierarchical activation of caspases. The initiator procaspases become autoproteolytically activated through a less understood process that is triggered by oligomerization. Procaspase-8, an initiator caspase recruited to death receptors, is activated through two cleavage events that proceed in a defined order to generate the large and small subunits of the mature protease. Here we show that dimerization of procaspase-8 produces enzymatically competent precursors through the stable homophilic interaction of the procaspase-8 protease domain. These dimers are also more susceptible to processing than individual procaspase-8 molecules, which leads to their cross-cleavage. The order of the two interdimer cleavage events is maintained by a sequential accessibility mechanism: the separation of the large and small subunits renders the region between the large subunit and prodomain susceptible to further cleavage. In addition, the activation process involves an alteration in the enzymatic properties of caspase-8; while procaspase-8 molecules specifically process one another, mature caspases only cleave effector caspases. These results reveal the key steps leading to the activation of procaspase-8 by oligomerization.


Assuntos
Caspases/química , Caspases/metabolismo , Precursores Enzimáticos/química , Precursores Enzimáticos/metabolismo , Apoptose , Caspase 8 , Caspase 9 , Caspases/genética , Caspases/isolamento & purificação , Linhagem Celular , Dimerização , Ativação Enzimática , Precursores Enzimáticos/genética , Precursores Enzimáticos/isolamento & purificação , Células HeLa , Humanos , Células Jurkat , Modelos Biológicos , Modelos Moleculares , Mutação Puntual , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Receptor fas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...