Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 11(12)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34940622

RESUMO

The feasibility of metabolomic 1H NMR spectroscopy is demonstrated for its potential to help unravel the complex factors that are impacting honeybee health and behavior. Targeted and non-targeted 1H NMR metabolic profiles of liquid and tissue samples of organisms could provide information on the pathology of infections and on environmentally induced stresses. This work reports on establishing extraction methods for NMR metabolic characterization of Apis mellifera, the European honeybee, describes the currently assignable aqueous metabolome, and gives examples of diverse samples (brain, head, body, whole bee) and biologically meaningful metabolic variation (drone, forager, day old, deformed wing virus). Both high-field (600 MHz) and low-field (80 MHz) methods are applicable, and 1H NMR can observe a useful subset of the metabolome of single bees using accessible NMR instrumentation (600 MHz, inverse room temperature probe) in order to avoid pooling several bees. Metabolite levels and changes can be measured by NMR in the bee brain, where dysregulation of metabolic processes has been implicated in colony collapse. For a targeted study, the ability to recover 10-hydroxy-2-decenoic acid in mandibular glands is shown, as well as markers of interest in the bee brain such as GABA (4-aminobutyrate), proline, and arginine. The findings here support the growing use of 1H NMR more broadly in bees, native pollinators, and insects.

2.
Viruses ; 13(2)2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673139

RESUMO

Managed colonies of European honey bees (Apis mellifera) are under threat from Varroa destructor mite infestation and infection with viruses vectored by mites. In particular, deformed wing virus (DWV) is a common viral pathogen infecting honey bees worldwide that has been shown to induce behavioral changes including precocious foraging and reduced associative learning. We investigated how DWV infection of bees affects the transcriptomic response of the brain. The transcriptomes of individual brains were analyzed using RNA-Seq after experimental infection of newly emerged adult bees with DWV. Two analytical methods were used to identify differentially expressed genes from the ~15,000 genes in the Apis mellifera genome. The 269 genes that had increased expression in DWV infected brains included genes involved in innate immunity such as antimicrobial peptides (AMPs), Ago2, and Dicer. Single bee brain NMR metabolomics methodology was developed for this work and indicates that proline is strongly elevated in DWV infected brains, consistent with the increased presence of the AMPs abaecin and apidaecin. The 1361 genes with reduced expression levels includes genes involved in cellular communication including G-protein coupled, tyrosine kinase, and ion-channel regulated signaling pathways. The number and function of the downregulated genes suggest that DWV has a major impact on neuron signaling that could explain DWV related behavioral changes.


Assuntos
Abelhas/genética , Abelhas/virologia , Proteínas de Insetos/genética , Vírus de RNA/fisiologia , Animais , Abelhas/metabolismo , Encéfalo/metabolismo , Encéfalo/virologia , Genoma de Inseto , Proteínas de Insetos/metabolismo , RNA-Seq
3.
Sci Rep ; 9(1): 4651, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894590

RESUMO

The dispersal of animals from their birth place has profound effects on the immediate survival and longer-term persistence of populations. Molecular studies have estimated that bumblebee colonies can be established many kilometers from their queens' natal nest site. However, little is known about when and how queens disperse during their lifespan. One possible life stage when dispersal may occur, is directly after emerging from hibernation. Here, harmonic radar tracking of artificially over-wintered Bombus terrestris queens shows that they spend most of their time resting on the ground with intermittent very short flights (duration and distance). We corroborate these behaviors with observations of wild queen bees, which show similar prolonged resting periods between short flights, indicating that the behavior of our radar-monitored bees was not due to the attachment of transponders nor an artifact of the bees being commercially reared. Radar-monitored flights were not continuously directed away from the origin, suggesting that bees were not intentionally trying to disperse from their artificial emergence site. Flights did not loop back to the origin suggesting bees were not trying to remember or get back to the original release site. Most individuals dispersed from the range of the harmonic radar within less than two days and did not return. Flight directions were not different from a uniform distribution and flight lengths followed an exponential distribution, both suggesting random dispersal. A random walk model based on our observed data estimates a positive net dispersal from the origin over many flights, indicating a biased random dispersal, and estimates the net displacement of queens to be within the range of those estimated in genetic studies. We suggest that a distinct post-hibernation life history stage consisting mostly of rest with intermittent short flights and infrequent foraging fulfils the dual purpose of ovary development and dispersal prior to nest searching.


Assuntos
Abelhas/fisiologia , Voo Animal/fisiologia , Hibernação/fisiologia , Comportamento de Retorno ao Território Vital/fisiologia , Animais , Feminino , Aprendizagem/fisiologia , Radar
4.
J Virol ; 91(2)2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27852845

RESUMO

The picornavirus-like deformed wing virus (DWV) has been directly linked to colony collapse; however, little is known about the mechanisms of host attachment or entry for DWV or its molecular and structural details. Here we report the three-dimensional (3-D) structures of DWV capsids isolated from infected honey bees, including the immature procapsid, the genome-filled virion, the putative entry intermediate (A-particle), and the empty capsid that remains after genome release. The capsids are decorated by large spikes around the 5-fold vertices. The 5-fold spikes had an open flower-like conformation for the procapsid and genome-filled capsids, whereas the putative A-particle and empty capsids that had released the genome had a closed tube-like spike conformation. Between the two conformations, the spikes undergo a significant hinge-like movement that we predicted using a Robetta model of the structure comprising the spike. We conclude that the spike structures likely serve a function during host entry, changing conformation to release the genome, and that the genome may escape from a 5-fold vertex to initiate infection. Finally, the structures illustrate that, similarly to picornaviruses, DWV forms alternate particle conformations implicated in assembly, host attachment, and RNA release. IMPORTANCE: Honey bees are critical for global agriculture, but dramatic losses of entire hives have been reported in numerous countries since 2006. Deformed wing virus (DWV) and infestation with the ectoparasitic mite Varroa destructor have been linked to colony collapse disorder. DWV was purified from infected adult worker bees to pursue biochemical and structural studies that allowed the first glimpse into the conformational changes that may be required during transmission and genome release for DWV.


Assuntos
Abelhas/virologia , Vírus de Insetos/fisiologia , Picornaviridae/fisiologia , Sequência de Aminoácidos , Animais , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Vírus de Insetos/ultraestrutura , Modelos Moleculares , Picornaviridae/ultraestrutura , Conformação Proteica , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/ultraestrutura
5.
J Exp Zool A Comp Exp Biol ; 305(12): 965-73, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17068798

RESUMO

Caudal autotomy, or the voluntary self-amputation of the tail, is an anti-predation strategy in lizards that depends on a complex array of environmental, individual, and species-specific characteristics. These factors affect both when and how often caudal autotomy is employed, as well as its overall rate of success. The potential costs of autotomy must be weighed against the benefits of this strategy. Many species have evolved specialized behavioral and physiological adaptations to minimize or compensate for any negative consequences. One of the most important steps following a successful autotomous escape involves regeneration of the lost limb. In some species, regeneration occurs rapidly; such swift regeneration illustrates the importance of an intact, functional tail in everyday experience. In lizards and other vertebrates, regeneration is a highly ordered process utilizing initial developmental programs as well as regeneration-specific mechanisms to produce the correct types and pattern of cells required to sufficiently restore the structure and function of the sacrificed tail. In this review, we discuss the behavioral and physiological features of self-amputation, with particular reference to the costs and benefits of autotomy and the basic mechanisms of regeneration. In the process, we identify how these behaviors could be used to explore the neural regulation of complex behavioral responses within a functional context.


Assuntos
Comportamento Animal/fisiologia , Lagartos/fisiologia , Regeneração/fisiologia , Cauda/fisiologia , Animais , Lagartos/anatomia & histologia , Especificidade da Espécie , Cauda/anatomia & histologia , Cauda/inervação
6.
J Exp Biol ; 206(Pt 13): 2287-96, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12771177

RESUMO

Three experiments were performed to determine why removal of the corpora allata (the glands that produce juvenile hormone) causes honey bees to fail to return to their hive upon initiating flight. In Experiment 1, the naturally occurring flights of allatectomized bees were tracked with radar to determine whether the deficit is physical or cognitive. The results indicated a physical impairment: allatectomized bees had a significantly slower ground speed than sham and untreated bees during orientation flights, but otherwise attributes such as flight range and area were normal. Flight impairment was confirmed in Experiment 2, based on observations of takeoff made in the field at the hive entrance. The allatectomized group had a significantly smaller percentage of flightworthy bees than did the sham and untreated groups. Experiment 3 confirmed the flight impairment in laboratory tests and showed that allatectomy causes a decrease in metabolic rate. Allatectomized bees had significantly lower metabolic rates than untreated and sham bees, while allatectomized bees receiving hormone replacement had intermediate values. These results indicate that allatectomy causes flight impairment, probably partly due to effects on metabolic rate. They also suggest that juvenile hormone plays an additional, previously unknown, role in coordinating the physiological underpinning of division of labor in honey bee colonies.


Assuntos
Abelhas/fisiologia , Comportamento Cooperativo , Corpora Allata/fisiologia , Voo Animal/fisiologia , Comportamento de Retorno ao Território Vital/fisiologia , Hormônios Juvenis/fisiologia , Animais , Abelhas/metabolismo , Consumo de Oxigênio/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...