Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Biochem Zool ; 90(1): 15-33, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28051944

RESUMO

Wild and captive vertebrates face multiple stressors that all have the potential to induce chronic maternal stress (i.e., sustained, elevated plasma glucocorticoids), resulting in embryo exposure to elevated maternally derived glucocorticoids. In oviparous taxa such as fish, maternally derived glucocorticoids in eggs are known for their capacity to shape offspring phenotype. Using a variety of methodologies, scientists have quantified maternally derived levels of egg cortisol, the primary glucocorticoid in fishes, and examined the cascading effects of egg cortisol on progeny phenotype. Here we summarize and interpret the current state of knowledge on egg cortisol in fishes and the relationships linking maternal stress/state to egg cortisol and offspring phenotype/fitness. Considerable variation in levels of egg cortisol exists across species and among females within a species; this variation is hypothesized to be due to interspecific differences in reproductive life history and intraspecific differences in female condition. Outcomes of experimental studies manipulating egg cortisol vary both inter- and intraspecifically. Moreover, while exogenous elevation of egg cortisol (as a proxy for maternal stress) induces phenotypic changes commonly considered to be maladaptive (e.g., smaller offspring size), emerging work in other taxa suggests that there can be positive effects on fitness when the offspring's environment is taken into account. Investigations into (i) mechanisms by which egg cortisol elicits phenotypic change in offspring (e.g., epigenetics), (ii) maternal and offspring buffering capacity of cortisol, and (iii) factors driving natural variation in egg cortisol and how this variation affects offspring phenotype and fitness are all germane to discussions on egg glucocorticoids as signals of maternal stress.


Assuntos
Peixes/fisiologia , Glucocorticoides/metabolismo , Óvulo/fisiologia , Animais , Estresse Fisiológico/fisiologia
2.
J Fish Biol ; 85(5): 1785-92, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25229327

RESUMO

To gain a deeper understanding of how environmental conditions affect brain plasticity, brain size was explored across different seasons using the invasive round goby Neogobius melanostomus. The results show that N. melanostomus had heavier telencephalon in the spring compared to the autumn across the two years of study. Furthermore, fish in reproductive condition had heavier telencephala, indicating that tissue investment and brain plasticity may be related to reproductive needs in N. melanostomus.


Assuntos
Peixes/anatomia & histologia , Estações do Ano , Telencéfalo/anatomia & histologia , Animais , Ontário , Tamanho do Órgão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...