Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Rheum Dis ; 80(3): 367-375, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33055079

RESUMO

BACKGROUND: Despite recent advances in the understanding of the genetic architecture of osteoarthritis (OA), only two genetic loci have been identified for OA of the hand, in part explained by the complexity of the different hand joints and heterogeneity of OA pathology. METHODS: We used data from the Rotterdam Study (RSI, RSII and RSIII) to create three hand OA phenotypes based on clustering patterns of radiographic OA severity to increase power in our modest discovery genome-wide association studies in the RS (n=8700), and sought replication in an independent cohort, the Framingham Heart Study (n=1203). We used multiple approaches that leverage different levels of information and functional data to further investigate the underlying biological mechanisms and candidate genes for replicated loci. We also attempted to replicate known OA loci at other joint sites, including the hips and knees. RESULTS: We found two novel genome-wide significant loci for OA in the thumb joints. We identified WNT9A as a possible novel causal gene involved in OA pathogenesis. Furthermore, several previously identified genetic loci for OA seem to confer risk for OA across multiple joints: TGFa, RUNX2, COL27A1, ASTN2, IL11 and GDF5 loci. CONCLUSIONS: We identified a robust novel genetic locus for hand OA on chromosome 1, of which WNT9A is the most likely causal gene. In addition, multiple genetic loci were identified to be associated with OA across multiple joints. Our study confirms the potential for novel insight into the genetic architecture of OA by using biologically meaningful stratified phenotypes.


Assuntos
Articulação da Mão , Osteoartrite , Proteínas Wnt , Análise por Conglomerados , Colágenos Fibrilares/genética , Estudo de Associação Genômica Ampla , Articulação da Mão/diagnóstico por imagem , Humanos , Osteoartrite/complicações , Osteoartrite/diagnóstico por imagem , Osteoartrite/genética , Fenótipo , Proteínas Wnt/genética
2.
Elife ; 82019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31535975

RESUMO

Changes in cell proliferation define transitions from tissue growth to physiological homeostasis. In tendons, a highly organized extracellular matrix undergoes significant postnatal expansion to drive growth, but once formed, it appears to undergo little turnover. However, tendon cell activity during growth and homeostatic maintenance is less well defined. Using complementary methods of genetic H2B-GFP pulse-chase labeling and BrdU incorporation in mice, we show significant postnatal tendon cell proliferation, correlating with longitudinal Achilles tendon growth. Around day 21, there is a transition in cell turnover with a significant decline in proliferation. After this time, we find low amounts of homeostatic tendon cell proliferation from 3 to 20 months. These results demonstrate that tendons harbor significant postnatal mitotic activity, and limited, but detectable activity in adult and aged stages. It also points towards the possibility that the adult tendon harbors resident tendon progenitor populations, which would have important therapeutic implications.


Assuntos
Tendão do Calcâneo/crescimento & desenvolvimento , Ciclo Celular/genética , Proliferação de Células/fisiologia , Homeostase/genética , Tendão do Calcâneo/fisiologia , Animais , Matriz Extracelular/genética , Matriz Extracelular/fisiologia , Camundongos , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...