Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 9122, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28831197

RESUMO

Blue whale sound production has been thought to occur by Helmholtz resonance via air flowing from the lungs into the upper respiratory spaces. This implies that the frequency of blue whale vocalizations might be directly proportional to the size of their sound-producing organs. Here we present a sound production mechanism where the fundamental and overtone frequencies of blue whale B calls can be well modeled using a series of short-duration (<1 s) wavelets. We propose that the likely source of these wavelets are pneumatic pulses caused by opening and closing of respiratory valves during air recirculation between the lungs and laryngeal sac. This vocal production model is similar to those proposed for humpback whales, where valve open/closure and vocal fold oscillation is passively driven by airflow between the lungs and upper respiratory spaces, and implies call frequencies could be actively changed by the animal to center fundamental tones at different frequency bands during the call series.


Assuntos
Acústica , Balaenoptera , Modelos Teóricos , Som , Vocalização Animal , Algoritmos , Animais
2.
Philos Trans A Math Phys Eng Sci ; 368(1919): 2435-59, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20403836

RESUMO

The number of large slope failures in some high-mountain regions such as the European Alps has increased during the past two to three decades. There is concern that recent climate change is driving this increase in slope failures, thus possibly further exacerbating the hazard in the future. Although the effects of a gradual temperature rise on glaciers and permafrost have been extensively studied, the impacts of short-term, unusually warm temperature increases on slope stability in high mountains remain largely unexplored. We describe several large slope failures in rock and ice in recent years in Alaska, New Zealand and the European Alps, and analyse weather patterns in the days and weeks before the failures. Although we did not find one general temperature pattern, all the failures were preceded by unusually warm periods; some happened immediately after temperatures suddenly dropped to freezing. We assessed the frequency of warm extremes in the future by analysing eight regional climate models from the recently completed European Union programme ENSEMBLES for the central Swiss Alps. The models show an increase in the higher frequency of high-temperature events for the period 2001-2050 compared with a 1951-2000 reference period. Warm events lasting 5, 10 and 30 days are projected to increase by about 1.5-4 times by 2050 and in some models by up to 10 times. Warm extremes can trigger large landslides in temperature-sensitive high mountains by enhancing the production of water by melt of snow and ice, and by rapid thaw. Although these processes reduce slope strength, they must be considered within the local geological, glaciological and topographic context of a slope.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...