Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685075

RESUMO

Nowadays, different systems for reducing pesticides in table grapes are being tested at different production stages either in the field or in postharvest. The present study tested ozonated water treatments at the beginning of the cold storage of the Princess® seedless table grape variety to reduce the residue contents of some pesticides and to evaluate their effect on gray mold and the berry microbiome. An ozone generator capable of producing an ozone concentration ranging from 18 to 65 Nm3 was utilized for obtaining three ozone concentration levels in water: 3, 5 and 10 mg/L. Ozonated water was placed in a 70 L plastic box where 500 g grape samples closed in perforated plastic clamshell containers were immersed utilizing two washing times (5 and 10 min). Overall, six ozonated water treatments were tested. After the ozonated water treatments, all samples were stored for 30 days at 2 °C and 95% relative humidity to simulate commercial practices. The pesticide residue contents were determined before the ozonated water treatments (T0) and 30 days after the cold storage (T1). The treatments with ozonated water washing reduced the pesticide residues up to 100%, while the SO2 control treatment reduced the pesticide residues ranging from 20.7 to 60.7%. Using 3 mg/L ozonated water to wash grapes for 5 min represented the optimal degradation conditions for all of the analyzed pesticides, except for fludioxonil, which degraded better with a washing time of 10 min. The ozone treatments did not significantly reduce the gray mold and the fungal and bacterial microbiome, while a relevant reduction was observed in the yeast population.

2.
Pathogens ; 11(5)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35631009

RESUMO

This study aimed to evaluate pathogenic bacterial contamination of the water-soil-plant system in potted olive trees irrigated with reclaimed wastewater. Desalinated water (DW) obtained by treating municipal wastewater (SW) and reclaimed water (RW) obtained by mixing SW with the brine (BR) produced by DESERT technology (tertiary treatment by ultrafiltration, active carbon and reverse osmosis) were used. Two different irrigation regimes were compared: full irrigation (FI) and regulated deficit irrigation (RDI). During two irrigation seasons the concentrations of Escherichia coli, enterococci, spores of sulfite-reducing Clostridia (SRC) and Salmonella spp. were monitored in water, soil and fruit samples. Microbial concentrations in DW were always below the threshold for reuse in agriculture, while RW showed the highest level of contamination for all observed parameters. RDI management appeared to increase the soil content of SRC spores with respect to FI. Sporadically low SRC spore contamination was recorded in some fruits only in 2018, regardless of the irrigation source, probably because of accidental contamination during sampling or post-harvest handling. This study encourages the creation of a better regulatory framework reference, with specific guidelines for the use of RW as part of integrated environmental systems for the management of sustainable agriculture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...