Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 66(5): 055010, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33594993

RESUMO

Image-guided therapies in the abdomen and pelvis are often hindered by motion artifacts in cone-beam CT (CBCT) arising from complex, non-periodic, deformable organ motion during long scan times (5-30 s). We propose a deformable image-based motion compensation method to address these challenges and improve CBCT guidance. Motion compensation is achieved by selecting a set of small regions of interest in the uncompensated image to minimize a cost function consisting of an autofocus objective and spatiotemporal regularization penalties. Motion trajectories are estimated using an iterative optimization algorithm (CMA-ES) and used to interpolate a 4D spatiotemporal motion vector field. The motion-compensated image is reconstructed using a modified filtered backprojection approach. Being image-based, the method does not require additional input besides the raw CBCT projection data and system geometry that are used for image reconstruction. Experimental studies investigated: (1) various autofocus objective functions, analyzed using a digital phantom with a range of sinusoidal motion magnitude (4, 8, 12, 16, 20 mm); (2) spatiotemporal regularization, studied using a CT dataset from The Cancer Imaging Archive with deformable sinusoidal motion of variable magnitude (10, 15, 20, 25 mm); and (3) performance in complex anatomy, evaluated in cadavers undergoing simple and complex motion imaged on a CBCT-capable mobile C-arm system (Cios Spin 3D, Siemens Healthineers, Forchheim, Germany). Gradient entropy was found to be the best autofocus objective for soft-tissue CBCT, increasing structural similarity (SSIM) by 42%-92% over the range of motion magnitudes investigated. The optimal temporal regularization strength was found to vary widely (0.5-5 mm-2) over the range of motion magnitudes investigated, whereas optimal spatial regularization strength was relatively constant (0.1). In cadaver studies, deformable motion compensation was shown to improve local SSIM by ∼17% for simple motion and ∼21% for complex motion and provided strong visual improvement of motion artifacts (reduction of blurring and streaks and improved visibility of soft-tissue edges). The studies demonstrate the robustness of deformable motion compensation to a range of motion magnitudes, frequencies, and other factors (e.g. truncation and scatter).


Assuntos
Tomografia Computadorizada de Feixe Cônico , Processamento de Imagem Assistida por Computador/métodos , Movimentos dos Órgãos , Algoritmos , Artefatos , Humanos , Imagens de Fantasmas , Fatores de Tempo
2.
Phys Med Biol ; 66(5): 055012, 2021 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-33477131

RESUMO

Model-based iterative reconstruction (MBIR) for cone-beam CT (CBCT) offers better noise-resolution tradeoff and image quality than analytical methods for acquisition protocols with low x-ray dose or limited data, but with increased computational burden that poses a drawback to routine application in clinical scenarios. This work develops a comprehensive framework for acceleration of MBIR in the form of penalized weighted least squares optimized with ordered subsets separable quadratic surrogates. The optimization was scheduled on a set of stages forming a morphological pyramid varying in voxel size. Transition between stages was controlled with a convergence criterion based on the deviation between the mid-band noise power spectrum (NPS) measured on a homogeneous region of the evolving reconstruction and that expected for the converged image, computed with an analytical model that used projection data and the reconstruction parameters. A stochastic backprojector was developed by introducing a random perturbation to the sampling position of each voxel for each ray in the reconstruction within a voxel-based backprojector, breaking the deterministic pattern of sampling artifacts when combined with an unmatched Siddon forward projector. This fast, forward and backprojector pair were included into a multi-resolution reconstruction strategy to provide support for objects partially outside of the field of view. Acceleration from ordered subsets was combined with momentum accumulation stabilized with an adaptive technique that automatically resets the accumulated momentum when it diverges noticeably from the current iteration update. The framework was evaluated with CBCT data of a realistic abdomen phantom acquired on an imaging x-ray bench and with clinical CBCT data from an angiography robotic C-arm (Artis Zeego, Siemens Healthineers, Forchheim, Germany) acquired during a liver embolization procedure. Image fidelity was assessed with the structural similarity index (SSIM) computed with a converged reconstruction. The accelerated framework provided accurate reconstructions in 60 s (SSIM = 0.97) and as little as 27 s (SSIM = 0.94) for soft-tissue evaluation. The use of simple forward and backprojectors resulted in 9.3× acceleration. Accumulation of momentum provided extra ∼3.5× acceleration with stable convergence for 6-30 subsets. The NPS-driven morphological pyramid resulted in initial faster convergence, achieving similar SSIM with 1.5× lower runtime than the single-stage optimization. Acceleration of MBIR to provide reconstruction time compatible with clinical applications is feasible via architectures that integrate algorithmic acceleration with approaches to provide stable convergence, and optimization schedules that maximize convergence speed.


Assuntos
Algoritmos , Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Artefatos , Alemanha , Humanos
3.
Artigo em Inglês | MEDLINE | ID: mdl-34267413

RESUMO

Model-based iterative reconstruction (MBIR) offers improved noise-resolution tradeoffs and artifact reduction in cone-beam CT compared to analytical reconstruction, but carries increased computational burden. An important consideration in minimizing computation time is reliable selection of the stopping criterion to perform the minimum number of iterations required to obtain the desired image quality. Most MBIR methods rely on a fixed number of iterations or relative metrics on image or cost-function evolution, and it would be desirable to use metrics that are more representative of the underlying image properties. A second front for reduction of computation time is the use of acceleration techniques (e.g. subsets or momentum). However, most of these techniques do not strictly guarantee convergence of the resulting MBIR method. A data-dependent analytical model of noise-power spectrum (NPS) for penalized weighted least squares (PWLS) reconstruction is proposed as an absolute metric of image properties for the fully converged volume. Distance to convergence is estimated as the root mean squared error (RMSE) between the estimated NPS and an NPS measured on a uniform region of interest (ROI) in the evolving volume. Iterations are stopped when the RMSE falls below a threshold directly related with the properties of the target image. Further acceleration was achieved by combining the spectral stopping criterion with a morphological pyramid (mPyr) in which the minimization of the PWLS cost-function is divided in a cascade of stages. The algorithm parameters (voxel size in this work) change between stages to achieve faster evolution in early stages, and a final stage with the target parameters to guarantee convergence. Transition between stages is governed by the spectral stopping criterion. The approach was evaluated on simulated CBCT data of a realistic digital abdomen phantom. Accuracy of the NPS model and evolution with time of the distance from the measured NPS was assessed in two ROIs. Performance of the spectrally-driven mPyr architecture was compared to a conventional, single stage, PWLS, and to two mPyr designs running a fixed number of iterations. The spectrally-driven mPyr achieved faster convergence, with 40% lower RMSE than the single stage PWLS, and between 10% and 20% RMSE reduction compared to other mPyr designs. The proposed spectral stopping criterion proved to be a suitable choice for a stopping rule, and, in particular, to govern mPyr stage transition.

4.
Phys Med Biol ; 63(2): 025030, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29116058

RESUMO

Modern cone-beam CT systems, especially C-arms, are capable of diverse source-detector orbits. However, geometric calibration of these systems using conventional configurations of spherical fiducials (BBs) may be challenged for novel source-detector orbits and system geometries. In part, this is because the BB configurations are designed with careful forethought regarding the intended orbit so that BB marker projections do not overlap in projection views. Examples include helical arrangements of BBs (Rougee et al 1993 Proc. SPIE 1897 161-9) such that markers do not overlap in projections acquired from a circular orbit and circular arrangements of BBs (Cho et al 2005 Med. Phys. 32 968-83). As a more general alternative, this work proposes a calibration method based on an array of line-shaped, radio-opaque wire segments. With this method, geometric parameter estimation is accomplished by relating the 3D line equations representing the wires to the 2D line equations of their projections. The use of line fiducials simplifies many challenges with fiducial recognition and extraction in an orbit-independent manner. For example, their projections can overlap only mildly, for any gantry pose, as long as the wires are mutually non-coplanar in 3D. The method was tested in application to circular and non-circular trajectories in simulation and in real orbits executed using a mobile C-arm prototype for cone-beam CT. Results indicated high calibration accuracy, as measured by forward and backprojection/triangulation error metrics. Triangulation errors on the order of microns and backprojected ray deviations uniformly less than 0.2 mm were observed in both real and simulated orbits. Mean forward projection errors less than 0.1 mm were observed in a comprehensive sweep of different C-arm gantry angulations. Finally, successful integration of the method into a CT imaging chain was demonstrated in head phantom scans.


Assuntos
Algoritmos , Calibragem , Tomografia Computadorizada de Feixe Cônico/métodos , Marcadores Fiduciais , Imagens de Fantasmas , Tomógrafos Computadorizados , Humanos , Processamento de Imagem Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...