Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Parasitol Drugs Drug Resist ; 15: 144-151, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33684885

RESUMO

The validation of anti-Acanthamoeba activity of commercial eye drops has gained a great interest recently and a growing number of commercials eye drop were evaluated for their aptitude to inhibit Acanthamoeba as a second pharmacological effect. In the present study, three different eye drops, commercializing in Spain, including TobraDex, Cusimolol and Colircusi antiedema have been tested in vitro against trophozoites and cysts stage of the facultative pathogen Acanthamoeba. The alamarBlue™ method was used to evaluate both trophocidal and cysticidal properties. The most active eye drops were tested for their impact on some programmed cell death features. We found out that the cells inhibition was strain and eye drop dependent, and 5% eye drop was able to eliminate both trophozoite and cyst stage of Acanthamoeba spp. A treatment of 24 h with 5% of TobraDex or Cusimolol was able to show DNA condensation, collapse in the mitochondrial membrane potential and reduction of the ATP level production in Acanthamoeba. We could assume that the present eye drops could induce programed cell death like process in Acanthamoeba via mitochondrial pathway.


Assuntos
Acanthamoeba , Amebicidas , Soluções Oftálmicas , Acanthamoeba/efeitos dos fármacos , Amebicidas/farmacologia , Amebicidas/uso terapêutico , Soluções Oftálmicas/farmacologia , Soluções Oftálmicas/uso terapêutico , Trofozoítos
2.
Pathogens ; 9(3)2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192043

RESUMO

The establishment of an effective therapeutic agent against Acanthamoeba keratitis (AK), remains until present, an issue to be solved due to the existence of a cyst stage in the life cycle of Acanthamoeba. Moreover, the effectiveness of the current standard therapeutic agents varies depending on the tested Acanthamoeba strains and its resistance pattern. In the present study, two 10-point augmented simplex-centroid designs were used to formulate a three-component mixture system using water, atorvastatin, and Diclofenaco-lepori or Optiben. The amoebicidal effects and in vitro-induced toxicity in a eukaryotic cell line were determined for all experiments. The optimal mixture to inhibit the parasite without inducing toxicity was established in the first plan as 30% Optiben, 63.5% atorvastatin, and 3.1% water. As for the second experimental design, the optimal mixture to inhibit Acanthamoeba with lower toxicity effect was composed of 17.6% Diclofenaco-lepori and 82.4% atorvastatin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...