Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 80(2): 669-677, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37759365

RESUMO

BACKGROUND: Chemical insecticides are an important tool to control damaging pest infestations. However, lack of species specificity, the rise of resistance and the demand for biological alternatives with improved ecotoxicity profiles means that chemicals with new modes of action are required. RNA interference (RNAi)-based strategies using double-stranded RNA (dsRNA) as a species-specific bio-insecticide offer an exquisite solution that addresses these issues. Many species, such as the fruit pest Drosophila suzukii, do not exhibit RNAi when dsRNA is orally administered due to degradation by gut nucleases and slow cellular uptake pathways. Thus, delivery vehicles that protect and deliver dsRNA are highly desirable. RESULTS: In this work, we demonstrate the complexation of D. suzukii-specific dsRNA for degradation of vha26 mRNA with bespoke diblock copolymers. We study the ex vivo protection of dsRNA against enzymatic degradation by gut enzymes, which demonstrates the efficiency of this system. Flow cytometry then investigates the cellular uptake of Cy3-labelled dsRNA, showing a 10-fold increase in the mean fluorescence intensity of cells treated with polyplexes. The polymer/dsRNA polyplexes induced a significant 87% decrease in the odds of survival of D. suzukii larvae following oral feeding only when formed with a diblock copolymer containing a long neutral block length (1:2 cationic block/neutral block). However, there was no toxicity when fed to the closely related Drosophila melanogaster. CONCLUSION: We provide evidence that dsRNA complexation with diblock copolymers is a promising strategy for RNAi-based species-specific pest control, but optimisation of polymer composition is essential for RNAi success. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Inseticidas , Polímeros , Animais , Polímeros/metabolismo , Inseticidas/farmacologia , RNA de Cadeia Dupla/genética , Drosophila melanogaster/genética , Interferência de RNA
2.
Biomacromolecules ; 23(6): 2362-2373, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35549247

RESUMO

Interaction between the anionic phosphodiester backbone of DNA/RNA and polycations can be exploited as a means of delivering genetic material for therapeutic and agrochemical applications. In this work, quaternized poly(2-(dimethylamino)ethyl methacrylate)-block-poly(N,N-dimethylacrylamide) (PQDMAEMA-b-PDMAm) double hydrophilic block copolymers (DHBCs) were synthesized via reversible addition-fragmentation chain-transfer (RAFT) polymerization as nonviral delivery vehicles for double-stranded RNA. The assembly of DHBCs and dsRNA forms distinct polyplexes that were thoroughly characterized to establish a relationship between the length of the uncharged poly(N,N-dimethylacrylamide) (PDMA) block and the polyplex size, complexation efficiency, and colloidal stability. Dynamic light scattering reveals the formation of smaller polyplexes with increasing PDMA lengths, while gel electrophoresis confirms that these polyplexes require higher N/P ratio for full complexation. DHBC polyplexes exhibit enhanced stability in low ionic strength environments in comparison to homopolymer-based polyplexes. In vitro enzymatic degradation assays demonstrate that both homopolymer and DHBC polymers efficiently protect dsRNA from degradation by RNase A enzyme.


Assuntos
Polímeros , RNA de Cadeia Dupla , Interações Hidrofóbicas e Hidrofílicas , Metacrilatos/química , Polimerização , Polímeros/química
3.
Viruses ; 11(8)2019 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-31405199

RESUMO

Double-stranded RNA (dsRNA) molecules of viral origin trigger a post-transcriptional gene-silencing mechanism called RNA interference (RNAi). Specifically, virally derived dsRNA is recognized and cleaved by the enzyme Dicer2 into short interfering RNAs (siRNAs), which further direct sequence-specific RNA silencing, ultimately silencing replication of the virus. Notably, RNAi can also be artificially triggered by the delivery of gene-specific dsRNA, thereby leading to endogenous gene silencing. This is a widely used technology that holds great potential to contribute to novel pest control strategies. In this regard, research efforts have been set to find methods to efficiently trigger RNAi in the field. In this article, we demonstrate the generation of dsRNA- and/or virus-derived siRNAs-the main RNAi effectors-in six insect species belonging to five economically important orders (Lepidoptera, Orthoptera, Hymenoptera, Coleoptera, and Diptera). In addition, we describe that the siRNA length distribution is species-dependent. Taken together, our results reveal interspecies variability in the (antiviral) RNAi mechanism in insects and show promise to contribute to future research on (viral-based) RNAi-triggering mechanisms in this class of animals.


Assuntos
Interações Hospedeiro-Patógeno/genética , Insetos/genética , Insetos/virologia , Interferência de RNA , RNA de Cadeia Dupla , RNA Viral , Animais , Inativação Gênica , Especificidade de Órgãos , Controle de Pragas
4.
J Insect Physiol ; 115: 1-11, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30905610

RESUMO

Next generation sequencing has revealed the widespread occurrence of persistent virus infections in insects but little is known regarding to what extent persistent infections can affect cellular physiology and how they might contribute to the development of disease. In contrast to the pathogenic infections occurring in Drosophila S2 cells, it was observed that Cricket Paralysis virus (CrPV; Dicistroviridae) causes persistent infections in 9 lepidopteran and 2 coleopteran cell lines. The status of the persistent infection was subsequently investigated in more detail using silkworm-derived Bm5 cells, where the infection eventually becomes pathogenic after 3-4 weeks. The short-term persistence period in Bm5 cells is characterized by low levels of viral replication and virion production as well as by the production of viral siRNAs. However, during this period cellular physiology also becomes altered since the cells become susceptible to infection by the nodavirus Flock House virus (FHV). Pathogenicity and widespread mortality at 4 weeks is preceded by a large increase in virion production and the transcriptional activation of immune-related genes encoding RNAi factors and transcription factors in the Toll, Imd and Jak-STAT pathways. During the infection of Bm5 cells, the infective properties of CrPV are not altered, indicating changes in the physiology of the host cells during the transition from short-term persistence to pathogenicity. The in vitro system of Bm5 cells persistently infected with CrPV can therefore be presented as an easily accessible model to study the nature of persistent virus infections and the processes that trigger the transition to pathogenicity, for instance through the application of different "omics" approaches (transcriptomics, proteomics, metabolomics). The different factors that can cause the transition from persistence to pathogenicity in the Bm5-CrPV infection model are discussed.


Assuntos
Dicistroviridae/fisiologia , Interações Hospedeiro-Patógeno , Insetos/virologia , Animais , Bombyx , Linhagem Celular , Insetos/imunologia , Ativação Transcricional
5.
J Mol Graph Model ; 81: 77-85, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29529496

RESUMO

Insect growth is regulated by the steroid hormone 20-hydroxyecdysone (20E), which works via the ecdysone receptor (EcR). To identify biologically active and novel ecdysone agonists/antagonists, ligand/structure-based virtual screening combined with pharmacophore modeling and molecular docking was performed to identify novel nonsteroidal lead compounds. Nine molecules were screened and selected for an in vitro cell-based reporter bioassay. The results showed that VS-006 and VS-009 exhibited antagonistic activity in S2 cells, whereas only VS-006 exhibited antagonistic activity in Bm5 cells. Molecular dynamic simulation of VS-006 complexed with the ligand binding domain of EcR validated the binding stability of VS-006 and highlighted the key residues for further lead optimization.


Assuntos
Descoberta de Drogas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptores de Esteroides/química , Descoberta de Drogas/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Ligantes , Conformação Molecular , Estrutura Molecular , Ligação Proteica , Receptores de Esteroides/agonistas , Receptores de Esteroides/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
6.
Sci Rep ; 8(1): 1931, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29386578

RESUMO

The Colorado potato beetle is one of the most challenging agricultural pests to manage. It has shown a spectacular ability to adapt to a variety of solanaceaeous plants and variable climates during its global invasion, and, notably, to rapidly evolve insecticide resistance. To examine evidence of rapid evolutionary change, and to understand the genetic basis of herbivory and insecticide resistance, we tested for structural and functional genomic changes relative to other arthropod species using genome sequencing, transcriptomics, and community annotation. Two factors that might facilitate rapid evolutionary change include transposable elements, which comprise at least 17% of the genome and are rapidly evolving compared to other Coleoptera, and high levels of nucleotide diversity in rapidly growing pest populations. Adaptations to plant feeding are evident in gene expansions and differential expression of digestive enzymes in gut tissues, as well as expansions of gustatory receptors for bitter tasting. Surprisingly, the suite of genes involved in insecticide resistance is similar to other beetles. Finally, duplications in the RNAi pathway might explain why Leptinotarsa decemlineata has high sensitivity to dsRNA. The L. decemlineata genome provides opportunities to investigate a broad range of phenotypes and to develop sustainable methods to control this widely successful pest.


Assuntos
Agricultura , Besouros/genética , Genoma de Inseto , Genômica , Solanum tuberosum/parasitologia , Animais , Elementos de DNA Transponíveis/genética , Evolução Molecular , Feminino , Regulação da Expressão Gênica , Variação Genética , Genética Populacional , Interações Hospedeiro-Parasita/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Resistência a Inseticidas/genética , Masculino , Anotação de Sequência Molecular , Família Multigênica , Controle Biológico de Vetores , Filogenia , Interferência de RNA , Fatores de Transcrição/metabolismo
7.
Front Physiol ; 8: 1020, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29276491

RESUMO

Glycans are involved in many biological phenomena, including signal transduction, cell adhesion, immune response or differentiation. Although a few papers have reported on the role of glycans in the development and proper functioning of the insect midgut, no data are available regarding the localization of the glycan structures on the surface of the cells in the gut of insects. In this paper, we analyzed the spatial distribution of glycans present on the surface of the midgut cells in larvae of the cotton leafworm Spodoptera littoralis, an important agricultural pest insect worldwide. For this purpose, we established primary midgut cell cultures, probed these individual cells that are freely suspended in liquid medium with a selection of seven fluorescently labeled lectins covering a range of different carbohydrate binding specificities [mannose oligomers (GNA and HHA), GalNAc/Gal (RSA and SSA), GlcNAc (WGA and Nictaba) and Neu5Ac(α-2,6)Gal/GalNAc (SNA-I)], and visualized the interaction of these lectins with the different zones of the midgut cells using confocal microscopy. Our analysis focused on the typical differentiated columnar cells with a microvillar brush border at their apical side, which are dominantly present in the Lepidopteran midgut and function in food digestion and absorption, and as well as on the undifferentiated stem cells that are important for midgut development and repair. Confocal microscopy analyses showed that the GalNAc/Gal-binding lectins SSA and RSA and the terminal GlcNAc-recognizing WGA bound preferentially to the apical microvillar zone of the differentiated columnar cells as compared to the basolateral pole. The reverse result was observed for the mannose-binding lectins GNA and HHA, as well as Nictaba that binds preferentially to GlcNAc oligomers. Furthermore, differences in lectin binding to the basal and lateral zones of the cell membranes of the columnar cells were apparent. In the midgut stem cells, GNA and Nictaba bound more strongly to the membrane of these undifferentiated cells compared to the microvillar pole of the columnar cells, while SSA, HHA, WGA, and SNA-I showed stronger binding to the microvilli. Our results indicated that polarization of the midgut cells is also reflected by a specific distribution of glycans, especially between the basal and microvillar pole. The data are discussed in relation to the functioning and development of the insect midgut.

8.
Viruses ; 8(12)2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27999371

RESUMO

RNA interference (RNAi) is the primary antiviral defense system in insects and its importance for pollinator health is indisputable. In this work, we examined the effect of Israeli acute paralysis virus (IAPV) infection on the RNAi process in the bumblebee, Bombus terrestris, and whether the presence of possible functional viral suppressors could alter the potency of the host's immune response. For this, a two-fold approach was used. Through a functional RNAi assay, we observed an enhancement of the RNAi system after IAPV infection instead of its suppression, despite only minimal upregulation of the genes involved in RNAi. Besides, the presence of the proposed suppressor 1A and the predicted OrfX protein in IAPV could not be confirmed using high definition mass spectrometry. In parallel, when bumblebees were infected with cricket paralysis virus (CrPV), known to encode a suppressor of RNAi, no increase in RNAi efficiency was seen. For both viruses, pre-infection with the one virus lead to a decreased replication of the other virus, indicating a major effect of competition. These results are compelling in the context of Dicistroviridae in multi-virus/multi-host networks as the effect of a viral infection on the RNAi machinery may influence subsequent virus infections.


Assuntos
Abelhas/virologia , Dicistroviridae/imunologia , Dicistroviridae/fisiologia , Interações Hospedeiro-Patógeno , Interferência de RNA , Interferência Viral , Replicação Viral , Animais , Abelhas/imunologia
9.
J Insect Physiol ; 93-94: 81-93, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27595655

RESUMO

RNAi is broadly used as a technique for specific gene silencing in insects but few studies have investigated the factors that can affect its efficiency. Viral infections have the potential to interfere with RNAi through their production of viral suppressors of RNAi (VSRs) and the production of viral small RNAs that can saturate and inactivate the RNAi machinery. In this study, the impact of persistent infection of the RNA viruses Flock house virus (FHV) and Macula-like virus (MLV) on RNAi efficiency was investigated in selected lepidopteran cell lines. Lepidopteran cell lines were found to be readily infected by both viruses without any apparent pathogenic effects, with the exception of Bombyx-derived Bm5 and BmN4 cells, which could not be infected by FHV. Because Sf21 cells were free from both FHV and MLV and Hi5-SF were free from FHV and only contained low levels of MLV, they were tested to evaluate the impact of the presence of the virus. Two types of RNAi reporter assays however did not detect a significant interference with gene silencing in infected Sf21 and Hi5-SF cells when compared to virus-free cells. In Hi5 cells, the presence of FHV could be easily cleared through the expression of an RNA hairpin that targets its VSR gene, confirming that the RNAi mechanism was not inhibited. Sequencing indicated that the B2 RNAi inhibitor gene of FHV and a putative VSR gene from MLV were intact in persistently infected cell lines, indicating that protection against RNAi remains essential for virus survival. It is proposed that infection levels of persistent viruses in the cell lines are too low to have an impact on RNAi efficiency in the lepidopteran cell lines and that encoded VSRs act locally at the sites of viral replication (mitochondrial membranes) without affecting the rest of the cytoplasm.


Assuntos
Mariposas/virologia , Interferência de RNA , Vírus de RNA/fisiologia , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/genética , Linhagem Celular , Nodaviridae/fisiologia
10.
Genome Biol ; 16: 76, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25908251

RESUMO

BACKGROUND: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. RESULTS: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. CONCLUSIONS: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation.


Assuntos
Abelhas/genética , Comportamento Animal , Genes de Insetos , Comportamento Social , Animais , Venenos de Abelha/genética , Abelhas/classificação , Abelhas/fisiologia , Células Quimiorreceptoras/metabolismo , Mapeamento Cromossômico , Bases de Dados Genéticas , Evolução Molecular , Feminino , Regulação da Expressão Gênica , Rearranjo Gênico , Genômica , Sequências Repetitivas Dispersas , Masculino , Fases de Leitura Aberta , Polimorfismo de Nucleotídeo Único , Selenoproteínas/genética , Selenoproteínas/metabolismo , Análise de Sequência de DNA , Especificidade da Espécie , Sintenia
11.
Genome Biol ; 16: 83, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25908406

RESUMO

BACKGROUND: Sociality has many rewards, but can also be dangerous, as high population density and low genetic diversity, common in social insects, is ideal for parasite transmission. Despite this risk, honeybees and other sequenced social insects have far fewer canonical immune genes relative to solitary insects. Social protection from infection, including behavioral responses, may explain this depauperate immune repertoire. Here, based on full genome sequences, we describe the immune repertoire of two ecologically and commercially important bumblebee species that diverged approximately 18 million years ago, the North American Bombus impatiens and European Bombus terrestris. RESULTS: We find that the immune systems of these bumblebees, two species of honeybee, and a solitary leafcutting bee, are strikingly similar. Transcriptional assays confirm the expression of many of these genes in an immunological context and more strongly in young queens than males, affirming Bateman's principle of greater investment in female immunity. We find evidence of positive selection in genes encoding antiviral responses, components of the Toll and JAK/STAT pathways, and serine protease inhibitors in both social and solitary bees. Finally, we detect many genes across pathways that differ in selection between bumblebees and honeybees, or between the social and solitary clades. CONCLUSIONS: The similarity in immune complement across a gradient of sociality suggests that a reduced immune repertoire predates the evolution of sociality in bees. The differences in selection on immune genes likely reflect divergent pressures exerted by parasites across social contexts.


Assuntos
Abelhas/genética , Abelhas/imunologia , Comportamento Animal , Evolução Molecular , Comportamento Social , Animais , Abelhas/classificação , Feminino , Regulação da Expressão Gênica , Genes de Insetos , Variação Genética , Masculino , Seleção Genética
12.
Gen Comp Endocrinol ; 212: 163-77, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24971805

RESUMO

The decapod Crangon crangon is one of the most valuable European fisheries commodities. Despite its economic importance, little sequence data is available for this shrimp species. In this paper, we report the transcriptome sequencing for five different stages of C. crangon (early embryo, late embryo, larva, female adults and male adults) and the annotation and stage-specific expression analysis of nuclear receptors (NRs) and RNA interference (RNAi)-related genes. The NRs are transcription factors that play an essential role in growth, development, cell differentiation, molting/metamorphosis and reproduction, while the RNAi-related genes are very important for internal gene expression regulation and in antiviral defense. We discovered a NR in the female C. crangon which is either a very rapidly evolved homolog of HR10, or a novel NR altogether. This new NR could act as a biological marker for sex determination as it is not expressed in male adults. Most RNAi-related genes were present in C. crangon, proving that the requirements for successful RNAi is present in this decapod shrimp. RNAi-based applications in Crangon such as its use in functional genomics or as antiviral therapeutics could become very important in the near future.


Assuntos
Crangonidae/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Interferência de RNA/fisiologia , Receptores Citoplasmáticos e Nucleares/genética , Sequência de Aminoácidos , Animais , Feminino , Masculino , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos
13.
J Invertebr Pathol ; 115: 76-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24184950

RESUMO

To date, there are no validated internal reference genes for the normalization of RT-qPCR data from virus infection experiments with pollinating insects. In this study we evaluated the stability of five candidate internal reference genes: elongation factor-1-alpha (ELF1α), peptidylprolyl isomerase A (PPIA), 60S ribosomal protein L23 (RPL23), TATA-binding protein (TBP) and polyubiquitin (UBI), in relation to Israeli acute paralysis virus (IAPV) infection of Bombus terrestris. We investigated the stability of these genes: in whole bodies and individual body parts, as well as in whole bodies collected at different time intervals after infection with IAPV. Our data identified PPIA as the single, most-optimal internal reference gene and the combination of PPAI-RPL23-UBI as a fully-sufficient multiple internal reference genes set for IAPV infection experiments in B. terrestris.


Assuntos
Abelhas/genética , Abelhas/virologia , Dicistroviridae , Genes de Insetos/genética , Animais , Reação em Cadeia da Polimerase em Tempo Real , Padrões de Referência , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Curr Opin Insect Sci ; 6: 22-27, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32846664

RESUMO

Most bee viruses are RNA viruses belonging to two major families of Dicistroviridae and Iflaviridae. During viral infection, virus-derived double stranded RNAs activate a major host innate immune pathway, namely the small interfering RNAs pathway (siRNA pathway), which degrades the viral RNA or the viral genome. This results in 21-22 nucleotide-long virus-derived siRNAs (vsiRNAs). Recent studies showed that vsiRNAs, matching to viruses from the family of Dicistroviridae and Iflaviridae, were generated in infected bees. Moreover, higher virus titers in honeybees also resulted in higher amounts of vsiRNAs, demonstrating that the siRNA response is proportional to the intensity of viral infection. Intriguingly, non-specific dsRNA could also trigger an immune response, leading to the restriction of the viral infection, however this mechanism is still unclear. Other findings demonstrated that bees can be protected through introducing virus specific-dsRNA to activate the siRNA response against the target virus. The latter is highlighting a new strategy to tackle bee viruses.

15.
Insect Sci ; 20(1): 4-14, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23955821

RESUMO

RNA interference (RNAi) refers to the process of exogenous double-stranded RNA (dsRNA) silencing the complementary endogenous messenger RNA. RNAi has been widely used in entomological research for functional genomics in a variety of insects and its potential for RNAi-based pest control has been increasingly emphasized mainly because of its high specificity. This review focuses on the approaches of introducing dsRNA into insect cells or insect bodies to induce effective RNAi. The three most common delivery methods, namely, microinjection, ingestion, and soaking, are illustrated in details and their advantages and limitations are summarized for purpose of feasible RNAi research. In this review, we also briefly introduce the two possible dsRNA uptake machineries, other dsRNA delivery methods and the history of RNAi in entomology. Factors that influence the specificity and efficiency of RNAi such as transfection reagents, selection of dsRNA region, length, and stability of dsRNA in RNAi research are discussed for further studies.


Assuntos
Técnicas de Transferência de Genes , Insetos/genética , RNA de Cadeia Dupla/genética , Animais , Técnicas de Transferência de Genes/tendências , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Insetos/metabolismo
16.
J Insect Physiol ; 59(3): 295-305, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23291362

RESUMO

Whole insect assays where Rhizoctonia solani agglutinin (RSA) was fed to larval stages of the cotton leaf-worm Spodoptera littoralis and the pea aphid Acyrthosiphon pisum demonstrated a high concentration-dependent entomotoxicity, suggesting that this GalNAc/Gal-specific fungal lectin might be a good control agent for different pest insects. RSA at 10 mg/g in the solid diet of 2nd-instar caterpillars caused 84% weight reduction after 8 days with none of the caterpillars reaching the 4th-instar stage. In sucking aphids, 50% mortality was achieved after 3 days with 9 µM of RSA in the liquid diet. Feeding of FITC-labeled RSA to both insect pest species revealed strong lectin binding at the apical/luminal side of the midgut epithelium with the brush border zone, suggesting the insect midgut as a primary insecticide target tissue for RSA. This was also confirmed with cell cultures in vitro, where there was high fluorescence binding at the microvillar zone with primary cultures of larval midgut columnar cells of S. littoralis, and also at the surface with the insect midgut CF-203 cell line without lectin uptake in the midgut cells. In vitro assays using insect midgut CF-203 cells, revealed that RSA was highly toxic with an EC50 of 0.3 µM. Preincubation with GalNAc and saponin indicated that this action of RSA was carbohydrate-binding dependent and happened at the surface of the cells. Intoxicated CF-203 cells showed symptoms of apoptosis as nuclear condensation and DNA fragmentation, and this concurred with an increase of caspase-3/7, -8 and -9 activities. Finally, RSA affinity chromatography of membrane extracts of CF-203 cells followed by LC-MS/MS allowed the identification of 5747 unique peptides, among which four putatively glycosylated membrane proteins that are associated with apoptosis induction, namely Fas-associated factor, Apoptosis-linked gene-2, Neuroglian and CG2076, as potential binding targets for RSA. These data are discussed in relation to the physiological effects of RSA.


Assuntos
Afídeos/efeitos dos fármacos , Proteínas Fúngicas/toxicidade , Inseticidas/toxicidade , Lectinas/toxicidade , Rhizoctonia/química , Spodoptera/efeitos dos fármacos , Spodoptera/metabolismo , Animais , Afídeos/genética , Afídeos/crescimento & desenvolvimento , Afídeos/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Proteínas Fúngicas/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Inseticidas/metabolismo , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/metabolismo , Lectinas/metabolismo , Controle Biológico de Vetores , Rhizoctonia/metabolismo , Spodoptera/genética , Spodoptera/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...