Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 10(7): 2403-2418, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38848266

RESUMO

Staphylococcus aureus, a bacterium resistant to multiple drugs, is a significant cause of illness and death worldwide. Antimicrobial peptides (AMPs) provide an excellent potential strategy to cope with this threat. Recently, we characterized a derivative of the frog-skin AMP esculentin-1a, Esc(1-21) (1) that is endowed with potent activity against Gram-negative bacteria but poor efficacy against Gram-positive strains. In this study, three analogues of peptide 1 were designed by replacing Gly8 with α-aminoisobutyric acid (Aib), Pro, and dPro (2-4, respectively). The single substitution Gly8 → Aib8 in peptide 2 makes it active against the planktonic form of Gram-positive bacterial strains, especially Staphylococcus aureus, including multidrug-resistant clinical isolates, with an improved biostability without resulting in cytotoxicity to mammalian cells. Moreover, peptide 2 showed a higher antibiofilm activity than peptide 1 against both reference and clinical isolates of S. aureus. Peptide 2 was also able to induce rapid bacterial killing, suggesting a membrane-perturbing mechanism of action. Structural analysis of the most active peptide 2 evidenced that the improved biological activity of peptide 2 is the consequence of a combination of higher biostability, higher α helical content, and ability to reduce membrane fluidity and to adopt a distorted helix, bent in correspondence of Aib8. Overall, this study has shown how a strategic single amino acid substitution is sufficient to enlarge the spectrum of activity of the original peptide 1, and improve its biological properties for therapeutic purposes, thus paving the way to optimize AMPs for the development of new broad-spectrum anti-infective agents.


Assuntos
Substituição de Aminoácidos , Antibacterianos , Biofilmes , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Biofilmes/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Humanos , Proteínas de Anfíbios/farmacologia , Proteínas de Anfíbios/química , Proteínas de Anfíbios/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Animais , Farmacorresistência Bacteriana
2.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38673985

RESUMO

Antimicrobial resistance is a silent pandemic harming human health, and Pseudomonas aeruginosa is the most common bacterium responsible for chronic pulmonary and eye infections. Antimicrobial peptides (AMPs) represent promising alternatives to conventional antibiotics. In this review, the in vitro/in vivo activities of the frog skin-derived AMP Esc(1-21) are shown. Esc(1-21) rapidly kills both the planktonic and sessile forms of P. aeruginosa and stimulates migration of epithelial cells, likely favoring repair of damaged tissue. However, to undertake preclinical studies, some drawbacks of AMPs (cytotoxicity, poor biostability, and limited delivery to the target site) must be overcome. For this purpose, the stereochemistry of two amino acids of Esc(1-21) was changed to obtain the diastereomer Esc(1-21)-1c, which is more stable, less cytotoxic, and more efficient in treating P. aeruginosa-induced lung and cornea infections in mouse models. Incorporation of these peptides (Esc peptides) into nanoparticles or immobilization to a medical device (contact lens) was revealed to be an effective strategy to ameliorate and/or to prolong the peptides' antimicrobial efficacy. Overall, these data make Esc peptides encouraging candidates for novel multifunctional drugs to treat lung pathology especially in patients with cystic fibrosis and eye dysfunctions, characterized by both tissue injury and bacterial infection.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Pseudomonas aeruginosa/efeitos dos fármacos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Humanos , Anuros , Pele/microbiologia , Pele/efeitos dos fármacos , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química
4.
Bioorg Chem ; 145: 107227, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387400

RESUMO

Multidrug-resistant (MDR) pathogens are severely impacting our ability to successfully treat common infections. Here we report the synthesis of a panel of adarotene-related retinoids showing potent antimicrobial activity on Staphylococcus aureus strains (including multidrug-resistant ones). Fluorescence and molecular dynamic studies confirmed that the adarotene analogues were able to induce conformational changes and disfunctions to the cell membrane, perturbing the permeability of the phospholipid bilayer. Since the major obstacle for developing retinoids is their potential cytotoxicity, a selected candidate was further investigated to evaluate its activity on a panel of human cell lines. The compound was found to be well tolerated, with IC50 5-15-fold higher than the MIC on S. aureus strains. Furthermore, the adarotene analogue had a good pharmacokinetic profile, reaching a plasma concentration of about 6 µM after 0.5 h after administration (150 mg/kg), at least twice the MIC observed against various bacterial strains. Moreover, it was demonstrated that the compound potentiated the growth-inhibitory effect of the poorly bioavailable rifaximin, when used in combination. Overall, the collected data pave the way for the development of synthetic retinoids as potential therapeutics for hard-to-treat infectious diseases caused by antibiotic-resistant Gram-positive pathogens.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Antibacterianos , Retinoides/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Testes de Sensibilidade Microbiana
5.
Front Chem ; 11: 1271153, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942400

RESUMO

Introduction: The increase in bacterial strains resistant to conventional antibiotics is an alarming problem for human health and could lead to pandemics in the future. Among bacterial pathogens responsible for a large variety of severe infections there is Pseudomonas aeruginosa. Therefore, there is an urgent need for new molecules with antimicrobial activity or that can act as adjuvants of antibiotics already in use. In this scenario, antimicrobial peptides (AMPs) hold great promise. Recently, we characterized a frog-skin AMP derived from esculentin-1a, namely Esc(1-21)-1c, endowed with antipseudomonal activity without being cytotoxic to human cells. Methods: The combinatorial effect of the peptide and antibiotics was investigated through the checkerboard assay, differential proteomic and transcriptional analysis. Results: Here, we found that Esc(1-21)-1c can synergistically inhibit the growth of P. aeruginosa cells with three different antibiotics, including tetracycline. We therefore investigated the underlying mechanism implemented by the peptide using a differential proteomic approach. The data revealed a significant decrease in the production of three proteins belonging to the MexAB-OprM efflux pump upon treatment with sub-inhibitory concentration of Esc(1-21)-1c. Down-regulation of these proteins was confirmed by transcriptional analysis and direct measurement of their relative levels in bacterial cells by tandem mass spectrometry analysis in multiple reaction monitoring scan mode. Conclusion: These evidences suggest that treatment with Esc(1-21)-1c in combination with antibiotics would increase the intracellular drug content making bacteria more susceptible to the antibiotic. Overall, these results highlight the importance of characterizing new molecules able to synergize with conventional antibiotics, paving the way for the development of alternative therapeutic strategies based on AMP/antibiotic formulations to counteract the emergence of resistant bacterial strains and increase the use of "old" antibiotics in medical practice.

6.
Biomolecules ; 13(7)2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37509064

RESUMO

The corneal epithelium is a layer in the anterior part of eye that contributes to light refraction onto the retina and to the ocular immune defense. Although an intact corneal epithelium is an excellent barrier against microbial pathogens and injuries, corneal abrasions can lead to devastating eye infections. Among them, Pseudomonas aeruginosa-associated keratitis often results in severe deterioration of the corneal tissue and even blindness. Hence, the discovery of new drugs able not only to eradicate ocular infections, which are often resistant to antibiotics, but also to elicit corneal wound repair is highly demanded. Recently, we demonstrated the potent antipseudomonal activity of two peptides, Esc(1-21) and its diastereomer Esc(1-21)-1c. In this study, by means of a mouse model of P. aeruginosa keratitis and an in vivo corneal debridement wound, we discovered the efficacy of these peptides, particularly Esc(1-21)-1c, to cure keratitis and to promote corneal wound healing. This latter property was also supported by in vitro cell scratch and ELISA assays. Overall, the current study highlights Esc peptides as novel ophthalmic agents for treating corneal infection and injury, being able to display a dual function, antimicrobial and wound healing, rarely identified in a single peptide at the same micromolar concentration range.


Assuntos
Lesões da Córnea , Ceratite , Infecções por Pseudomonas , Animais , Camundongos , Pseudomonas aeruginosa , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Ceratite/tratamento farmacológico , Ceratite/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Lesões da Córnea/tratamento farmacológico , Peptídeos/uso terapêutico , Cicatrização
7.
Front Chem ; 10: 1000765, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465859

RESUMO

The plight of antimicrobial resistance continues to limit the availability of antibiotic treatment effective in combating resistant bacterial infections. Despite efforts made to rectify this issue and minimise its effects on both patients and the wider community, progress in this area remains minimal. Here, we de-novo designed a peptide named KDEON WK-11, building on previous work establishing effective residues and structures active in distinguished antimicrobial peptides such as lactoferrin. We assessed its antimicrobial activity against an array of bacterial strains and identified its most potent effect, against Pseudomonas aeruginosa with an MIC value of 3.12 µM, lower than its counterparts developed with similar residues and chain lengths. We then determined its anti-biofilm properties, potential mechanism of action and in vitro cytotoxicity. We identified that KDEON WK-11 had a broad range of antimicrobial activity and specific capabilities to fight Pseudomonas aeruginosa with low in vitro cytotoxicity and promising potential to express anti-lipopolysaccharide qualities, which could be exploited to expand its properties into an anti-sepsis agent.

8.
Pharmaceutics ; 14(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36365116

RESUMO

In recent years, we have discovered Esc(1-21) and its diastereomer (Esc peptides) as valuable candidates for the treatment of Pseudomonas lung infection, especially in patients with cystic fibrosis (CF). Furthermore, engineered poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) were revealed to be a promising pulmonary delivery system of antimicrobial peptides. However, the "ad hoc" development of novel therapeutics requires consideration of their stability, tolerability, and safety. Hence, by means of electrophysiology experiments and preclinical studies on healthy mice, we demonstrated that neither Esc peptides or Esc-peptide-loaded PLGA NPs significantly affect the integrity of the lung epithelium, nor change the global gene expression profile of lungs of treated animals compared to those of vehicle-treated animals. Noteworthy, the Esc diastereomer endowed with the highest antimicrobial activity did not provoke any pulmonary pro-inflammatory response, even at a concentration 15-fold higher than the efficacy dosage 24 h after administration in the free or encapsulated form. The therapeutic index was ≥70, and the peptide was found to remain available in the bronchoalveolar lavage of mice, after two days of incubation. Overall, these studies should open an avenue for a new up-and-coming pharmacological approach, likely based on inhalable peptide-loaded NPs, to address CF lung disease.

9.
Antibiotics (Basel) ; 11(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36289944

RESUMO

Temporin family is one of the largest among antimicrobial peptides (AMPs), which act mainly by penetrating and disrupting the bacterial membranes. To further understand the relationship between the physical-chemical properties and their antimicrobial activity and selectivity, an analogue of Temporin L, [Nle1, dLeu9, dLys10]TL (Nle-Phe-Val-Pro-Trp-Phe-Lys-Phe-dLeu-dLys-Arg-Ile-Leu-CONH2) has been developed in the present work. The design strategy consisted of the addition of a norleucine residue at the N-terminus of the lead peptide sequence, [dLeu9, dLys10]TL, previously developed by our group. This modification promoted an increase of peptide hydrophobicity and, interestingly, more efficient activity against both Gram-positive and Gram-negative strains, without affecting human keratinocytes and red blood cells survival compared to the lead peptide. Thus, this novel compound was subjected to biophysical studies, which showed that the peptide [Nle1, dLeu9, dLys10]TL is unstructured in water, while it adopts ß-type conformation in liposomes mimicking bacterial membranes, in contrast to its lead peptide forming α-helical aggregates. After its aggregation in the bacterial membrane, [Nle1, dLeu9, dLys10]TL induced membrane destabilization and deformation. In addition, the increase of peptide hydrophobicity did not cause a loss of anti-inflammatory activity of the peptide [Nle1, dLeu9, dLys10]TL in comparison with its lead peptide. In this study, our results demonstrated that positive net charge, optimum hydrophobic-hydrophilic balance, and chain length remain the most important parameters to be addressed while designing small cationic AMPs.

10.
Antibiotics (Basel) ; 11(1)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35052961

RESUMO

In today's post-antibiotic era, the search for new antimicrobial compounds is of major importance and nature represents one of the primary sources of bioactive molecules. In this work, through a cheminformatics approach, we clustered an in-house library of natural products and their derivatives based on a combination of fingerprints and substructure search. We identified the prenylated emodine-type anthranoid ferruginin A as a novel antimicrobial compound. We tested its ability to inhibit and kill a panel of Gram-positive and Gram-negative bacteria, and compared its activity with that of two analogues, vismione B and ferruanthrone. Furthermore, the capability of these three anthranoids to disrupt staphylococcal biofilm was investigated, as well as their effect on the viability of human keratinocytes. Ferruginin A showed a potent activity against both the planktonic and biofilm forms of Gram-positive bacteria (i.e., Staphylococcus aureus and S. epidermidis) and had the best therapeutic index compared to vismione B and ferruanthrone. In conclusion, ferruginin A represents a promising scaffold for the further development of valuable antimicrobial agents.

11.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36613707

RESUMO

Many antibiotics are ineffective in killing Gram-negative bacteria due to the permeability barrier of the outer-membrane LPS. Infections caused by multi-drug-resistant Gram-negative pathogens require new antibiotics, which are often difficult to develop. Antibiotic potentiators disrupt outer-membrane LPS and can assist the entry of large-scaffold antibiotics to the bacterial targets. In this work, we designed a backbone-cyclized ultra-short, six-amino-acid-long (WKRKRY) peptide, termed cWY6 from LPS binding motif of ß-boomerang bactericidal peptides. The cWY6 peptide does not exhibit any antimicrobial activity; however, it is able to permeabilize the LPS outer membrane. Our results demonstrate the antibiotic potentiator activity in the designed cWY6 peptide for several conventional antibiotics (vancomycin, rifampicin, erythromycin, novobiocin and azithromycin). Remarkably, the short cWY6 peptide exhibits wound-healing activity in in vitro assays. NMR, computational docking and biophysical studies describe the atomic-resolution structure of the peptide in complex with LPS and mode of action in disrupting the outer membrane. The dual activities of cWY6 peptide hold high promise for further translation to therapeutics.


Assuntos
Antibacterianos , Lipopolissacarídeos , Lipopolissacarídeos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Azitromicina/farmacologia , Rifampina/farmacologia , Testes de Sensibilidade Microbiana , Bactérias Gram-Negativas
12.
Cell Mol Life Sci ; 79(1): 67, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-34971429

RESUMO

Mutations in the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein lead to persistent lung bacterial infections, mainly due to Pseudomonas aeruginosa, causing loss of respiratory function and finally death of people affected by CF. Unfortunately, even in the era of CFTR modulation therapies, management of pulmonary infections in CF remains highly challenging especially for patients with advanced stages of lung disease. Recently, we identified antimicrobial peptides (AMPs), namely Esc peptides, with potent antipseudomonal activity. In this study, by means of electrophysiological techniques and computational studies we discovered their ability to increase the CFTR-controlled ion currents, by direct interaction with the F508del-CFTR mutant. Remarkably, this property was not explored previously with any AMPs or peptides in general. More interestingly, in contrast with clinically used CFTR modulators, Esc peptides would give particular benefit to CF patients by combining their capability to eradicate lung infections and to act as promoters of airway wound repair with their ability to ameliorate the activity of the channel with conductance defects. Overall, our findings not only highlighted Esc peptides as the first characterized AMPs with a novel property, that is the potentiator activity of CFTR, but also paved the avenue to investigate the functions of AMPs and/or other peptide molecules, for a new up-and-coming pharmacological approach to address CF lung disease.


Assuntos
Peptídeos Antimicrobianos/metabolismo , Peptídeos Antimicrobianos/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Pneumopatias/tratamento farmacológico , Infecções por Pseudomonas/tratamento farmacológico , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bicarbonatos/metabolismo , Cloretos/metabolismo , Fibrose Cística/genética , Fibrose Cística/microbiologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Transporte de Íons/efeitos dos fármacos , Pneumopatias/microbiologia , Pneumopatias/patologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/patogenicidade , Ratos , Ratos Endogâmicos F344
13.
J Med Chem ; 64(15): 11675-11694, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34296619

RESUMO

The pharmacodynamic and pharmacokinetic properties of bioactive peptides can be modulated by introducing conformational constraints such as intramolecular macrocyclizations, which can involve either the backbone and/or side chains. Herein, we aimed at increasing the α-helicity content of temporin L, an isoform of an intriguing class of linear antimicrobial peptides (AMPs), endowed with a wide antimicrobial spectrum, by the employment of diverse side-chain tethering strategies, including lactam, 1,4-substituted [1,2,3]-triazole, hydrocarbon, and disulfide linkers. Our approach resulted in a library of cyclic temporin L analogues that were biologically assessed for their antimicrobial, cytotoxic, and antibiofilm activities, leading to the development of the first-in-class cyclic peptide related to this AMP family. Our results allowed us to expand the knowledge regarding the relationship between the α-helical character of temporin derivatives and their biological activity, paving the way for the development of improved antibiotic cyclic AMP analogues.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Antineoplásicos/farmacologia , Bactérias/efeitos dos fármacos , Desenho de Fármacos , Animais , Antibacterianos/síntese química , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Rana temporaria , Relação Estrutura-Atividade
14.
Int J Mol Sci ; 22(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33429882

RESUMO

Persistent infections, such as those provoked by the Gram-negative bacterium Pseudomonas aeruginosa in the lungs of cystic fibrosis (CF) patients, can induce inflammation with lung tissue damage and progressive alteration of respiratory function. Therefore, compounds having both antimicrobial and immunomodulatory activities are certainly of great advantage in fighting infectious diseases and chronic inflammation. We recently demonstrated the potent antipseudomonal efficacy of the antimicrobial peptide (AMP) Esc(1-21) and its diastereomer Esc(1-21)-1c, namely Esc peptides. Here, we confirmed this antimicrobial activity by reporting on the peptides' ability to kill P. aeruginosa once internalized into alveolar epithelial cells. Furthermore, by means of enzyme-linked immunosorbent assay and Western blot analyses, we investigated the peptides' ability to detoxify the bacterial lipopolysaccharide (LPS) by studying their effects on the secretion of the pro-inflammatory cytokine IL-6 as well as on the expression of cyclooxygenase-2 from macrophages activated by P. aeruginosa LPS. In addition, by a modified scratch assay we showed that both AMPs are able to stimulate the closure of a gap produced in alveolar epithelial cells when cell migration is inhibited by concentrations of Pseudomonas LPS that mimic lung infection conditions, suggesting a peptide-induced airway wound repair. Overall, these results have highlighted the two Esc peptides as valuable candidates for the development of new multifunctional therapeutics for treatment of chronic infectious disease and inflammation, as found in CF patients.


Assuntos
Doenças Transmissíveis/tratamento farmacológico , Fibrose Cística/tratamento farmacológico , Inflamação/tratamento farmacológico , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Linhagem Celular , Doença Crônica/prevenção & controle , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/patologia , Ciclo-Oxigenase 2/genética , Fibrose Cística/microbiologia , Fibrose Cística/patologia , Defensinas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Fatores Imunológicos/farmacologia , Inflamação/microbiologia , Inflamação/patologia , Interleucina-6/genética , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/química , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Proteínas Citotóxicas Formadoras de Poros/química , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Estereoisomerismo , Cicatrização/efeitos dos fármacos , Cicatrização/genética
15.
Int J Mol Sci ; 21(24)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321906

RESUMO

Bacterial biofilms are a serious threat for human health, and the Gram-positive bacterium Staphylococcus aureus is one of the microorganisms that can easily switch from a planktonic to a sessile lifestyle, providing protection from a large variety of adverse environmental conditions. Dormant non-dividing cells with low metabolic activity, named persisters, are tolerant to antibiotic treatment and are the principal cause of recalcitrant and resistant infections, including skin infections. Antimicrobial peptides (AMPs) hold promise as new anti-infective agents to treat such infections. Here for the first time, we investigated the activity of the frog-skin AMP temporin G (TG) against preformed S. aureus biofilm including persisters, as well as its efficacy in combination with tobramycin, in inhibiting S. aureus growth. TG was found to provoke ~50 to 100% reduction of biofilm viability in the concentration range from 12.5 to 100 µM vs ATCC and clinical isolates and to be active against persister cells (about 70-80% killing at 50-100 µM). Notably, sub-inhibitory concentrations of TG in combination with tobramycin were able to significantly reduce S. aureus growth, potentiating the antibiotic power. No critical cytotoxicity was detected when TG was tested in vitro up to 100 µM against human keratinocytes, confirming its safety profile for the development of a new potential anti-infective drug, especially for treatment of bacterial skin infections.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Biofilmes/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Sinergismo Farmacológico , Tobramicina/farmacologia
16.
J Enzyme Inhib Med Chem ; 35(1): 1751-1764, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32957844

RESUMO

The rapid development of antimicrobial resistance is pushing the search in the discovering of novel antimicrobial molecules to prevent and treat bacterial infections. Self-assembling antimicrobial peptides, as the lipidated peptides, are a novel and promising class of molecules capable of meeting this need. Based on previous work on Temporin L analogs, several new molecules lipidated at the N- or and the C-terminus were synthesised. Our goal is to improve membrane interactions through finely tuning self-assembly to reduce oligomerisation in aqueous solution and enhance self-assembly in bacterial membranes while reducing toxicity against human cells. The results here reported show that the length of the aliphatic moiety is a key factor to control target cell specificity and the oligomeric state of peptides either in aqueous solution or in a membrane-mimicking environment. The results of this study pave the way for the design of novel molecules with enhanced activities.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/síntese química , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Proteólise/efeitos dos fármacos , Ovinos , Relação Estrutura-Atividade
17.
J Org Chem ; 85(16): 10891-10901, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32806095

RESUMO

Colistin is a last-resort antibiotic for the treatment of multidrug resistant Gram-negative bacterial infections. Recently, a natural ent-beyerene diterpene was identified as a promising inhibitor of the enzyme responsible for colistin resistance mediated by lipid A aminoarabinosylation in Gram-negative bacteria, namely, ArnT (undecaprenyl phosphate-alpha-4-amino-4-deoxy-l-arabinose arabinosyl transferase). Here, semisynthetic analogues of hit were designed, synthetized, and tested against colistin-resistant Pseudomonas aeruginosa strains including clinical isolates to exploit the versatility of the diterpene scaffold. Microbiological assays coupled with molecular modeling indicated that for a more efficient colistin adjuvant activity, likely resulting from inhibition of the ArnT activity by the selected compounds and therefore from their interaction with the catalytic site of ArnT, an ent-beyerane scaffold is required along with an oxalate-like group at C-18/C-19 or a sugar residue at C-19 to resemble L-Ara4N. The ent-beyerane skeleton is identified for the first time as a privileged scaffold for further cost-effective development of valuable colistin resistance inhibitors.


Assuntos
Colistina , Diterpenos , Antibacterianos/farmacologia , Proteínas de Bactérias , Diterpenos/farmacologia , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa
18.
Molecules ; 25(16)2020 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-32784887

RESUMO

Antibiotic resistance is now considered a worldwide problem that puts public health at risk. The onset of bacterial strains resistant to conventional antibiotics and the scarcity of new drugs have prompted scientific research to re-evaluate natural products as molecules with high biological and chemical potential. A class of natural compounds of significant importance is represented by alkaloids derived from higher plants. In this review, we have collected data obtained from various research groups on the antimicrobial activities of these alkaloids against conventional antibiotic-resistant strains. In addition, the structure-function relationship was described and commented on, highlighting the high potential of alkaloids as antimicrobials.


Assuntos
Alcaloides/farmacologia , Antibacterianos/farmacologia , Produtos Biológicos/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Extratos Vegetais/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Humanos , Infecções Estafilocócicas/microbiologia
19.
Scientifica (Cairo) ; 2020: 3526286, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32676212

RESUMO

BACKGROUND: Recently, antimicrobial peptides (AMPs) have been investigated for their use in cancer therapy. They have been reported to selectively target and kill cancer cells whilst leaving normal healthy cells unaffected. Certain Anura AMPs have expressed selective cytotoxicity against tumour cells. AIM: To test the potential of Anura AMPs bombinin H2, bombinin H4, temporin A, and temporin L for use as therapeutic agents for non-small cell lung carcinoma (NSCLC). METHODS: Cytotoxic effects on NSCLC cell lines A549 and Calu-3 and normal epithelial cell line Beas-2B were tested using the CellTox Green Cytotoxicity Assay. Their haemolytic effects on human erythrocytes were also tested for their clinical relevance. Cell membrane profiling, using MALDI-TOF, was performed to ascertain if membrane characteristics of the NSCLC and Beas-2B cell lines may contribute to the AMPs mode of action. RESULTS: Bombinin H4 (100-1.5 µM, p < 0.05) and temporin A (100-50 µM, p < 0.05) showed selective cytotoxicity towards the NSCLC cell lines. Furthermore, they exhibited low levels of haemolytic activity (bombinin H4, 0.061%; temporin A, 0.874%) comparable to untreated cells. Cell membrane profiling showed the phospholipid composition of normal epithelial cell line Beas-2B to be divergent from the cancerous cell lines. However, there was an overlap in the phospholipid profiles of the NSCLC cell lines supporting the hypothesis that the AMPs may have a selective affinity via the membrane composition of cancerous cell lines. CONCLUSION: These results suggest that bombinin H4 and temporin A show potential for application in lung cancer therapies. Further in vitro and in vivo studies are required to develop a greater understanding of their use as anticancer agents.

20.
Antibiotics (Basel) ; 9(8)2020 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-32722535

RESUMO

Corynebacterium jeikeium is a commensal bacterium that colonizes human skin, and it is part of the normal bacterial flora. In non-risk subjects, it can be the cause of bad body smell due to the generation of volatile odorous metabolites, especially in the wet parts of the body that this bacterium often colonizes (i.e., groin and axillary regions). Importantly, in the last few decades, there have been increasing cases of serious infections provoked by this bacterium, especially in immunocompromised or hospitalized patients who have undergone installation of prostheses or catheters. The ease in developing resistance to commonly-used antibiotics (i.e., glycopeptides) has made the search for new antimicrobial compounds of clinical importance. Here, for the first time, we characterize the antimicrobial activity of some selected frog skin-derived antimicrobial peptides (AMPs) against C. jeikeium by determining their minimum inhibitory and bactericidal concentrations (MIC and MBC) by a microdilution method. The results highlight esculentin-1b(1-18) [Esc(1-18)] and esculentin-1a(1-21) [Esc(1-21)] as the most active AMPs with MIC and MBC of 4-8 and 0.125-0.25 µM, respectively, along with a non-toxic profile after a short- and long-term (40 min and 24 h) treatment of mammalian cells. Overall, these findings indicate the high potentiality of Esc(1-18) and Esc(1-21) as (i) alternative antimicrobials against C. jeikeium infections and/or as (ii) additives in cosmetic products (creams, deodorants) to reduce the production of bad body odor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...