Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Res ; 1496: 28-35, 2013 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-23274538

RESUMO

Traumatic brain injury (TBI) is a leading cause of death in the elderly and the incidence of mortality and morbidity increases with age. This study tested the hypothesis that, after TBI followed by hemorrhagic hypotension (HH) and resuscitation, cerebral blood flow (CBF) would decrease more in aged compared with young rats. Young adult (4-6 months) and aged (20-24 months) male Sprague-Dawley rats were anesthetized with isoflurane, prepared for parasagittal fluid percussion injury (FPI) and randomly assigned to receive either moderate FPI (2.0 atm) only, moderate FPI+severe HH (40 mm Hg for 45 min) followed by return of shed blood, or sham FPI. Intracranial pressure (ICP), CBF, and mean arterial pressure (MAP) were measured and, after twenty-four hours survival, the rats were euthanized and their brains were sectioned and stained with Fluoro-Jade (FJ), a dye that stains injured neurons. After moderate FPI, severe HH and reinfusion of shed blood, MAP and CBF were significantly reduced in the aged group, compared to the young group. Both FPI and FPI+HH groups significantly increased the numbers of FJ-positive neurons in hippocampal cell layers CA1, CA2 and CA3 (p<0.05 vs Sham) in young and aged rats. Despite differences in post-resuscitation MAP and CBF, there were no differences in the numbers of FJ-positive neurons in aged compared to young rats after FPI, HH and blood resuscitation. Although cerebral hypoperfusion in the aged rats was not associated with increased hippocampal cell injury, the trauma-induced reductions in CBF and post-resuscitation blood pressure may have resulted in damage to brain regions that were not examined or neurological or behavioral impairments that were not assessed in this study. Therefore, the maintenance of normal blood pressure and cerebral perfusion would be advisable in the treatment of elderly patients after TBI.


Assuntos
Envelhecimento , Lesões Encefálicas/complicações , Lesões Encefálicas/terapia , Hemorragia/etiologia , Ressuscitação/métodos , Fatores Etários , Animais , Pressão Arterial/fisiologia , Lesões Encefálicas/patologia , Contagem de Células , Circulação Cerebrovascular/fisiologia , Modelos Animais de Doenças , Fluoresceínas , Hipocampo/patologia , Pressão Intracraniana/fisiologia , Fluxometria por Laser-Doppler , Masculino , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
2.
Brain Res ; 1127(1): 119-26, 2007 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-17109824

RESUMO

Hippocampal damage contributes to cognitive dysfunction after traumatic brain injury (TBI). We previously showed that Fluoro-Jade, a fluorescent stain that labels injured, degenerating brain neurons, quantifies the extent of hippocampal injury after experimental fluid percussion TBI in rats. Coincidentally, we observed that injured neurons in the rat hippocampus also stained with Newport Green, a fluorescent dye specific for free ionic zinc. Here, we show that, regardless of injury severity or therapeutic intervention, the post-TBI population of injured neurons in rat hippocampal subfields CA1, CA3 and dentate gyrus is indistinguishable, both in numbers and anatomical distribution, from the population of neurons containing high levels of zinc. Treatment with lamotrigine, which inhibits presynaptic release of glutamate and presumably zinc that is co-localized with glutamate, reduced numbers of Fluoro-Jade-positive and Newport Green-positive neurons equally as did treatment with nicardipine, which blocks voltage-gated calcium channels through which zinc enters neurons. To confirm using molecular techniques that Fluoro-Jade and Newport Green-positive neurons are equivalent populations, we isolated total RNA from 25 Fluoro-Jade-positive and 25 Newport Green-positive pyramidal neurons obtained by laser capture microdissection (LCM) from the CA3 subfield, linearly amplified the mRNA and used quantitative ribonuclease protection analysis to demonstrate similar expression of mRNA for selected TBI-induced genes. Our data suggest that therapeutic interventions aimed at reducing neurotoxic zinc levels after TBI may reduce hippocampal neuronal injury.


Assuntos
Lesões Encefálicas/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Regulação para Cima/fisiologia , Zinco/metabolismo , Animais , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/metabolismo , Contagem de Células , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/patologia , Transtornos Cognitivos/fisiopatologia , Corantes , Modelos Animais de Doenças , Fluoresceínas , Corantes Fluorescentes , Regulação da Expressão Gênica/fisiologia , Hipocampo/patologia , Hipocampo/fisiopatologia , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/patologia , Compostos Orgânicos , Células Piramidais/metabolismo , Células Piramidais/patologia , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Coloração e Rotulagem/métodos
3.
Anesthesiology ; 102(4): 806-14, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15791111

RESUMO

BACKGROUND: After traumatic brain injury, memory dysfunction is due in part to damage to the hippocampus. To study the molecular mechanisms of this selective vulnerability, the authors used laser capture microdissection of neurons stained with Fluoro-Jade to directly compare gene expression in injured (Fluoro-Jade-positive) and adjacent uninjured (Fluoro-Jade-negative) rat hippocampal neurons after traumatic brain injury and traumatic brain injury plus hemorrhagic hypotension. METHODS: Twelve isoflurane-anesthetized Sprague-Dawley rats underwent moderate (2.0 atm) fluid percussion traumatic brain injury followed by either normotension or hemorrhagic hypotension. Animals were killed 24 h after injury. Frozen brain sections were double stained with 1% cresyl violet and 0.001% Fluoro-Jade. RNA from 10 Fluoro-Jade-positive neurons and 10 Fluoro-Jade-negative neurons, obtained from the hippocampal CA1, CA3, and dentate gyrus subfields using laser capture microdissection, was linearly amplified and analyzed by quantitative ribonuclease protection assay for nine neuroprotective and apoptosis-related genes. RESULTS: In injured CA3 neurons, expression of the neuroprotective genes glutathione peroxidase 1, heme oxygenase 1, and brain-derived neurotrophic factor was significantly decreased compared with that of adjacent uninjured neurons. Superimposition of hemorrhagic hypotension was associated with down-regulation of neuroprotective genes in both injured and uninjured neurons of all subregions. Expression of apoptosis-related genes did not vary between injured and uninjured neurons, with or without superimposed hemorrhage. CONCLUSIONS: The authors show, in the first direct comparison of messenger RNA levels in injured and uninjured hippocampal neurons, that injured neurons express lower levels of neuroprotective genes than adjacent uninjured neurons.


Assuntos
Lesões Encefálicas/metabolismo , Regulação da Expressão Gênica , Hipocampo/metabolismo , Hipotensão/fisiopatologia , Hemorragias Intracranianas/metabolismo , Neurônios/metabolismo , Animais , Apoptose/genética , Northern Blotting , Lesões Encefálicas/patologia , Fluoresceínas , Corantes Fluorescentes , Hipocampo/patologia , Hipotensão/etiologia , Hemorragias Intracranianas/complicações , Hemorragias Intracranianas/patologia , Neurônios/patologia , Ensaios de Proteção de Nucleases , Compostos Orgânicos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...