Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cannabis Res ; 6(1): 21, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702834

RESUMO

Since its discovery as one of the main components of cannabis and its affinity towards the cannabinoid receptor CB1, serving as a means to exert its psychoactivity, Δ9-tetrahydrocannabinol (Δ9-THC) has inspired medicinal chemists throughout history to create more potent derivatives. Initially, the goal was to synthesize chemical probes for investigating the molecular mechanisms behind the pharmacology of Δ9-THC and finding potential medical applications. The unintended consequence of this noble intent has been the proliferation of these compounds for recreational use. This review comprehensively covers the most exhaustive number of THC-like cannabinoids circulating on the recreational market. It provides information on the chemistry, synthesis, pharmacology, analytical assessment, and experiences related to the psychoactive effects reported by recreational users on online forums. Some of these compounds can be found in natural cannabis, albeit in trace amounts, while others are entirely artificial. Moreover, to circumvent legal issues, many manufacturers resort to semi-synthetic processes starting from legal products extracted from hemp, such as cannabidiol (CBD). Despite the aim to encompass all known THC-like molecules, new species emerge on the drug users' pipeline each month. Beyond posing a significantly high public health risk due to unpredictable and unknown side effects, scientific research consistently lags behind the rapidly evolving recreational market.

2.
Anal Bioanal Chem ; 413(13): 3399-3410, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33755770

RESUMO

Hemp cultivation is living a period of renewed interest worldwide after long years of opposition and abandonment. The European Union (EU) allows and subsidizes the growing of fiber and oilseed cultivars of Cannabis sativa L. with respect to the THC content limit of 0.2%. The EU method for the quantitative determination of Δ9-tetrahydrocannabinol (THC) content in hemp varieties provides to apply a tolerance of 0.03 g of THC per 100 g of sample concerning compliance assessment to that limit. However, the method does not report any precision data, especially useful as a function of THC content to evaluate measurement uncertainty and therefore to establish the conformity of hemp at different THC legal limits. Measurement uncertainty of the method by both bottom-up and top-down approach, besides repeatability and reproducibility, was investigated and estimated in the THC concentration range 0.2-1.0%, which includes the different legal limits set out for hemp around the world. We proposed Decision Rules for conformity of hemp showing that a non-compliant declaration beyond reasonable doubt should be stated when the THC content, as a mean result on a duplicate analysis, exceeds the limit by at least 11-15%, depending on THC limit. We highlighted other issues concerning practical aspects of hemp analysis, from sampling to evaluation of results, as well as the need to carry out collaborative studies on the EU method.


Assuntos
Cannabis/química , Dronabinol/análise , Incerteza , União Europeia , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...