Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging Dis ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38300642

RESUMO

The blood-brain barrier (BBB) plays a critical role in maintaining ion and fluid homeostasis, essential for brain metabolism and neuronal function. Regulation of nutrient, water, and ion transport across the BBB is tightly controlled by specialized ion transporters and channels located within its unique cellular components. These dynamic transport processes not only influence the BBB's structure but also impact vital signaling mechanisms, essential for its optimal function. Disruption in ion, pH, and fluid balance at the BBB is associated with brain pathology and has been implicated in various neurological conditions, including stroke, epilepsy, trauma, and neurodegenerative diseases such as Alzheimer's disease (AD). However, knowledge gaps exist regarding the impact of ion transport dysregulation on BBB function in neurodegenerative dementias. Several factors contribute to this gap: the complex nature of these conditions, historical research focus on neuronal mechanisms and technical challenges in studying the ion transport mechanisms in in vivo models and the lack of efficient in vitro BBB dementia models. This review provides an overview of current research on the roles of ion transporters and channels at the BBB and poses specific research questions: 1) How are the expression and activity of key ion transporters altered in AD and vascular dementia (VaD); 2) Do these changes contribute to BBB dysfunction and disease progression; and 3) Can restoring ion transport function mitigate BBB dysfunction and improve clinical outcomes. Addressing these gaps will provide a greater insight into the vascular pathology of neurodegenerative disorders.

2.
World Neurosurg ; 180: e786-e790, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852474

RESUMO

BACKGROUND: A clinical concern exists that pediatric patients with whiplash-associated disorder (WAD) might have missed structural injuries or, alternatively, subsequently develop structural injuries over time, despite initially negative imaging findings. The primary objective of this study is to assess follow-up imaging usage for pediatric patients presenting with WAD. METHODS: A retrospective review of 444 pediatric patients presenting to a level 1 pediatric trauma hospital from January 1, 2010 to December 31, 2019 was performed. Imaging was reviewed at the initial encounter and the 3- and 6-month follow-up appointments. RESULTS: At the initial evaluation, children aged <6 years were more likely to receive radiographs (P = 0.007) and magnetic resonance imaging (P = 0.048) than were children aged 6-11 and 12-18 years. At the 3- and 6-month follow-up appointments, persistent neck pain was rare, representing <15% of patients at either time. Regardless of pain persistence, 80.2% of patients seen at the 3-month follow-up and 100% of patients at the 6-month follow-up underwent additional imaging studies. At the 3-month follow-up, children with persistent neck pain were more likely to undergo magnetic resonance imaging than were patients without persistent pain (P < 0.001). Also, patients with persistent neck pain were also more likely to not undergo any imaging evaluation (P = 0.002). Follow-up imaging studies did not reveal new structural injuries at either time point. CONCLUSIONS: Follow-up imaging for pediatric patients with low-grade WAD did not identify new structural pathology-in patients with or without persistent neck pain.


Assuntos
Cervicalgia , Traumatismos em Chicotada , Humanos , Criança , Cervicalgia/complicações , Seguimentos , Traumatismos em Chicotada/complicações , Traumatismos em Chicotada/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Radiografia
3.
Int J Mol Sci ; 24(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37686096

RESUMO

To date, recanalization interventions are the only available treatments for ischemic stroke patients; however, there are no effective therapies for reducing stroke-induced neuroinflammation. We recently reported that H+ extrusion protein Na+/H+ exchanger-1 (NHE1) plays an important role in stroke-induced inflammation and white matter injury. In this study, we tested the efficacy of two potent NHE1 inhibitors, HOE642 and Rimeporide, with a delayed administration regimen starting at 24 h post-stroke in adult C57BL/6J mice. Post-stroke HOE642 and Rimeporide treatments accelerated motor and cognitive function recovery without affecting the initial ischemic infarct, neuronal damage, or reactive astrogliosis. However, the delayed administration of NHE1 blockers after ischemic stroke significantly reduced microglial inflammatory activation while enhanced oligodendrogenesis and white matter myelination, with an increased proliferation and decreased apoptosis of the oligodendrocytes. Our findings suggest that NHE1 protein plays an important role in microglia-mediated inflammation and white matter damage. The pharmacological blockade of NHE1 protein activity reduced microglia inflammatory responses and enhanced oligodendrogenesis and white matter repair, leading to motor and cognitive function recovery after stroke. Our study reveals the potential of targeting NHE1 protein as a therapeutic strategy for ischemic stroke therapy.


Assuntos
AVC Isquêmico , Trocador 1 de Sódio-Hidrogênio , Acidente Vascular Cerebral , Substância Branca , Animais , Camundongos , Antiarrítmicos , Inflamação , Camundongos Endogâmicos C57BL , Acidente Vascular Cerebral/tratamento farmacológico , Trocador 1 de Sódio-Hidrogênio/antagonistas & inibidores
4.
Cancers (Basel) ; 14(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35884391

RESUMO

Cancer cells possess a high metabolic demand for their rapid proliferation, survival, and progression and thus create an acidic and hypoxic tumor microenvironment (TME) deprived of nutrients. Moreover, acidity within the TME is the central regulator of tumor immunity that influences the metabolism of the immune cells and orchestrates the local and systemic immunity, thus, the TME has a major impact on tumor progression and resistance to anti-cancer therapy. Specifically, myeloid cells, which include myeloid-derived suppressor cells (MDSC), dendritic cells, and tumor-associated macrophages (TAMs), often reprogram their energy metabolism, resulting in stimulating the angiogenesis and immunosuppression of tumors. This review summarizes the recent findings of glucose, amino acids, and fatty acid metabolism changes of the tumor-associated macrophages (TAMs), and how the altered metabolism shapes the TME and anti-tumor immunity. Multiple proton pumps/transporters are involved in maintaining the alkaline intracellular pH which is necessary for the glycolytic metabolism of the myeloid cells and acidic TME. We highlighted the roles of these proteins in modulating the cellular metabolism of TAMs and their potential as therapeutic targets for improving immune checkpoint therapy.

5.
Cell Death Dis ; 13(4): 371, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440572

RESUMO

Reactive astrocytes (RA) secrete lipocalin-2 (LCN2) glycoprotein that regulates diverse cellular processes including cell death/survival, inflammation, iron delivery and cell differentiation. Elevated levels of LCN2 are considered as a biomarker of brain injury, however, the underlying regulatory mechanisms of its expression and release are not well understood. In this study, we investigated the role of astrocytic Na+/H+ exchanger 1 (NHE1) in regulating reactive astrocyte LCN2 secretion and neurodegeneration after stroke. Astrocyte specific deletion of Nhe1 in Gfap-CreER+/-;Nhe1f/f mice reduced astrogliosis and astrocytic LCN2 and GFAP expression, which was associated with reduced loss of NeuN+ and GRP78+ neurons in stroke brains. In vitro ischemia in astrocyte cultures triggered a significant increase of secreted LCN2 in astrocytic exosomes, which caused neuronal cell death and neurodegeneration. Inhibition of NHE1 activity during in vitro ischemia with its potent inhibitor HOE642 significantly reduced astrocytic LCN2+ exosome secretion. In elucidating the cellular mechanisms, we found that stroke triggered activation of NADPH oxidase (NOX)-NF-κB signaling and ROS-mediated LCN2 expression. Inhibition of astrocytic NHE1 activity attenuated NOX signaling and LCN2-mediated neuronal apoptosis and neurite degeneration. Our findings demonstrate for the first time that RA use NOX signaling to stimulate LCN2 expression and secretion. Blocking astrocytic NHE1 activity is beneficial to reduce LCN2-mediated neurotoxicity after stroke.


Assuntos
Astrócitos , Lipocalina-2 , Acidente Vascular Cerebral , Animais , Astrócitos/metabolismo , Isquemia/metabolismo , Lipocalina-2/genética , Lipocalina-2/metabolismo , Camundongos , NADPH Oxidases/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Acidente Vascular Cerebral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...