Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38260392

RESUMO

Neuroblastoma is a pediatric cancer arising from the developing sympathoadrenal lineage with complex inter- and intra-tumoral heterogeneity. To chart this complexity, we generated a comprehensive cell atlas of 55 neuroblastoma patient tumors, collected from two pediatric cancer institutions, spanning a range of clinical, genetic, and histologic features. Our atlas combines single-cell/nucleus RNA-seq (sc/scRNA-seq), bulk RNA-seq, whole exome sequencing, DNA methylation profiling, spatial transcriptomics, and two spatial proteomic methods. Sc/snRNA-seq revealed three malignant cell states with features of sympathoadrenal lineage development. All of the neuroblastomas had malignant cells that resembled sympathoblasts and the more differentiated adrenergic cells. A subset of tumors had malignant cells in a mesenchymal cell state with molecular features of Schwann cell precursors. DNA methylation profiles defined four groupings of patients, which differ in the degree of malignant cell heterogeneity and clinical outcomes. Using spatial proteomics, we found that neuroblastomas are spatially compartmentalized, with malignant tumor cells sequestered away from immune cells. Finally, we identify spatially restricted signaling patterns in immune cells from spatial transcriptomics. To facilitate the visualization and analysis of our atlas as a resource for further research in neuroblastoma, single cell, and spatial-omics, all data are shared through the Human Tumor Atlas Network Data Commons at www.humantumoratlas.org.

2.
Cell Rep ; 42(12): 113494, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38085642

RESUMO

Antigen-specific T cells traffic to, are influenced by, and create unique cellular microenvironments. Here we characterize these microenvironments over time with multiplexed imaging in a melanoma model of adoptive T cell therapy and human patients with melanoma treated with checkpoint inhibitor therapy. Multicellular neighborhood analysis reveals dynamic immune cell infiltration and inflamed tumor cell neighborhoods associated with CD8+ T cells. T cell-focused analysis indicates T cells are found along a continuum of neighborhoods that reflect the progressive steps coordinating the anti-tumor immune response. More effective anti-tumor immune responses are characterized by inflamed tumor-T cell neighborhoods, flanked by dense immune infiltration neighborhoods. Conversely, ineffective T cell therapies express anti-inflammatory cytokines, resulting in regulatory neighborhoods, spatially disrupting productive T cell-immune and -tumor interactions. Our study provides in situ mechanistic insights into temporal tumor microenvironment changes, cell interactions critical for response, and spatial correlates of immunotherapy outcomes, informing cellular therapy evaluation and engineering.


Assuntos
Melanoma , Humanos , Melanoma/patologia , Linfócitos T CD8-Positivos , Imunoterapia/métodos , Citocinas , Imunidade , Microambiente Tumoral
3.
Nature ; 619(7970): 572-584, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37468586

RESUMO

The intestine is a complex organ that promotes digestion, extracts nutrients, participates in immune surveillance, maintains critical symbiotic relationships with microbiota and affects overall health1. The intesting has a length of over nine metres, along which there are differences in structure and function2. The localization of individual cell types, cell type development trajectories and detailed cell transcriptional programs probably drive these differences in function. Here, to better understand these differences, we evaluated the organization of single cells using multiplexed imaging and single-nucleus RNA and open chromatin assays across eight different intestinal sites from nine donors. Through systematic analyses, we find cell compositions that differ substantially across regions of the intestine and demonstrate the complexity of epithelial subtypes, and find that the same cell types are organized into distinct neighbourhoods and communities, highlighting distinct immunological niches that are present in the intestine. We also map gene regulatory differences in these cells that are suggestive of a regulatory differentiation cascade, and associate intestinal disease heritability with specific cell types. These results describe the complexity of the cell composition, regulation and organization for this organ, and serve as an important reference map for understanding human biology and disease.


Assuntos
Intestinos , Análise de Célula Única , Humanos , Diferenciação Celular/genética , Cromatina/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Mucosa Intestinal/citologia , Intestinos/citologia , Intestinos/imunologia , Análise da Expressão Gênica de Célula Única
4.
Blood ; 137(22): 3015-3026, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33684935

RESUMO

The bone marrow (BM) is responsible for generating and maintaining lifelong output of blood and immune cells. In addition to its key hematopoietic function, the BM acts as an important lymphoid organ, hosting a large variety of mature lymphocyte populations, including B cells, T cells, natural killer T cells, and innate lymphoid cells. Many of these cell types are thought to visit the BM only transiently, but for others, like plasma cells and memory T cells, the BM provides supportive niches that promote their long-term survival. Interestingly, accumulating evidence points toward an important role for mature lymphocytes in the regulation of hematopoietic stem cells (HSCs) and hematopoiesis in health and disease. In this review, we describe the diversity, migration, localization, and function of mature lymphocyte populations in murine and human BM, focusing on their role in immunity and hematopoiesis. We also address how various BM lymphocyte subsets contribute to the development of aplastic anemia and immune thrombocytopenia, illustrating the complexity of these BM disorders and the underlying similarities and differences in their disease pathophysiology. Finally, we summarize the interactions between mature lymphocytes and BM resident cells in HSC transplantation and graft-versus-host disease. A better understanding of the mechanisms by which mature lymphocyte populations regulate BM function will likely improve future therapies for patients with benign and malignant hematologic disorders.


Assuntos
Células da Medula Óssea/imunologia , Doença Enxerto-Hospedeiro , Neoplasias Hematológicas , Células-Tronco Hematopoéticas/imunologia , Linfócitos/imunologia , Trombocitopenia , Aloenxertos , Animais , Células da Medula Óssea/patologia , Movimento Celular/imunologia , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/patologia , Doença Enxerto-Hospedeiro/fisiopatologia , Doença Enxerto-Hospedeiro/terapia , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/patologia , Neoplasias Hematológicas/fisiopatologia , Neoplasias Hematológicas/terapia , Hematopoese/imunologia , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/patologia , Humanos , Imunidade Inata , Linfócitos/patologia , Camundongos , Trombocitopenia/imunologia , Trombocitopenia/patologia , Trombocitopenia/fisiopatologia , Trombocitopenia/terapia
5.
J Comp Eff Res ; 9(12): 829-837, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32705880

RESUMO

The COVID-19 pandemic is revealing the unacceptable health disparities across New York City and in this country. The mortality rates of vulnerable and minority populations alone suggest a need to re-evaluate clinical decision making protocols, especially given the recently passed Emergency or Disaster Treatment Protection Act, which grants healthcare institutions full immunity from liability stemming from resource allocation/triage decisions. Here we examine the disparity literature against resource allocation guidelines, contending that these guidelines may propagate allocation of resources along ableist, ageist and racial biases. Finally, we make the claim that the state must successfully develop ones that ensure the just treatment of our most vulnerable.


Assuntos
Betacoronavirus , Tomada de Decisão Clínica , Infecções por Coronavirus/terapia , Guias como Assunto , Pandemias , Pneumonia Viral/terapia , Populações Vulneráveis , COVID-19 , Infecções por Coronavirus/prevenção & controle , Tomada de Decisões , Serviço Hospitalar de Emergência , Política de Saúde , Disparidades nos Níveis de Saúde , Humanos , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Alocação de Recursos , SARS-CoV-2 , Estados Unidos
6.
Front Immunol ; 11: 501, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32391000

RESUMO

Multiple myeloma (MM) is a plasma cell malignancy and the second most common hematological neoplasm in adults, comprising 1.8% of all cancers. With an annual incidence of ~30,770 cases in the United States, MM has a high mortality rate, leading to 12,770 deaths per year. MM is a genetically complex, highly heterogeneous malignancy, with significant inter- and intra-patient clonal variability. Recent years have witnessed dramatic improvements in the diagnostics, classification, and treatment of MM. However, patients with high-risk disease have not yet benefited from therapeutic advances. High-risk patients are often primary refractory to treatment or relapse early, ultimately resulting in progression toward aggressive end-stage MM, with associated extramedullary disease or plasma cell leukemia. Therefore, novel treatment modalities are needed to improve the outcomes of these patients. Bispecific antibodies (BsAbs) are immunotherapeutics that simultaneously target and thereby redirect effector immune cells to tumor cells. BsAbs have shown high efficacy in B cell malignancies, including refractory/relapsed acute lymphoblastic leukemia. Various BsAbs targeting MM-specific antigens such as B cell maturation antigen (BCMA), CD38, and CD138 are currently in pre-clinical and clinical development, with promising results. In this review, we outline these advances, focusing on BsAb drugs, their targets, and their potential to improve survival, especially for high-risk MM patients. In combination with current treatment strategies, BsAbs may pave the way toward a cure for MM.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Linfócitos B/fisiologia , Leucemia Plasmocitária/terapia , Mieloma Múltiplo/terapia , ADP-Ribosil Ciclase 1/imunologia , Animais , Antígeno de Maturação de Linfócitos B/imunologia , Diferenciação Celular , Ensaios Clínicos como Assunto , Epitopos , Humanos , Leucemia Plasmocitária/imunologia , Mieloma Múltiplo/imunologia , Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...