Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731357

RESUMO

Animal-sourced foods are important for human nutrition and health, but they can have a negative impact on the environment. These impacts can result in land use tensions associated with population growth and the loss of native forests and wetlands during agricultural expansion. Increased greenhouse gas emissions, and high water use but poor water quality outcomes can also be associated. Life cycle analysis from cradle-to-distribution has shown that novel plant-based meat alternatives can have an environmental footprint lower than that of beef finished in feedlots, but higher than for beef raised on well-managed grazed pastures. However, several technologies and practices can be used to mitigate impacts. These include ensuring that grazing occurs when feed quality is high, the use of dietary additives, breeding of animals with higher growth rates and increased fecundity, rumen microbial manipulations through the use of vaccines, soil management to reduce nitrous oxide emission, management systems to improve carbon sequestration, improved nutrient use efficacy throughout the food chain, incorporating maize silage along with grasslands, use of cover crops, low-emission composting barns, covered manure storages, and direct injection of animal slurry into soil. The technologies and systems that help mitigate or actually provide solutions to the environmental impact are under constant refinement to enable ever-more efficient production systems to allow for the provision of animal-sourced foods to an ever-increasing population.

2.
Animals (Basel) ; 14(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612316

RESUMO

Human health and diet are closely linked. The diversity of diets consumed by humans is remarkable, and most often incorporates both animal and plant-based foods. However, there has been a recent call for a reduced intake of animal-based foods due to concerns associated with human health in developed countries and perceived impacts on the environment. Yet, evidence for the superior nutritional quality of animal-sourced food such as meat, milk, and eggs, compared with plant-based foods, indicates that consumption of animal-sourced food should and will continue. This being the case, the aim here is to examine issues associated with animal-sourced foods in terms of both the quantification and mitigation of unintended consequences associated with environment, animal health, and herd management. Therefore, we examined the role of animal proteins in human societies with reference to the UN-FAO issues associated with animal-sourced foods. The emphasis is on dominant grazed pastoral-based systems, as used in New Zealand and Ireland, both with temperate moist climates and a similar reliance on global markets for generating net wealth from pastoral agricultural products. In conclusion, animal-sourced foods are shown to be an important part of the human diet. Production systems can result in unintended consequences associated with environment, animal health, and herd management, and there are technologies and systems to provide solutions to these that are available or under refinement.

3.
GM Crops Food ; 14(1): 1-41, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37690075

RESUMO

Innovation in agriculture has been essential in improving productivity of crops and forages to support a growing population, improving living standards while contributing toward maintaining environment integrity, human health, and wellbeing through provision of more nutritious, varied, and abundant food sources. A crucial part of that innovation has involved a range of techniques for both expanding and exploiting the genetic potential of plants. However, some techniques used for generating new variation for plant breeders to exploit are deemed higher risk than others despite end products of both processes at times being for all intents and purposes identical for the benefits they provide. As a result, public concerns often triggered by poor communication from innovators, resulting in mistrust and suspicion has, in turn, caused the development of a range of regulatory systems. The logic and motivations for modes of regulation used are reviewed and how the benefits from use of these technologies can be delivered more efficiently and effectively is discussed.


Assuntos
Alimentos Geneticamente Modificados , Edição de Genes , Humanos , Plantas Geneticamente Modificadas/genética , Produtos Agrícolas/genética , Agricultura/métodos , Tecnologia
4.
Plants (Basel) ; 10(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34685806

RESUMO

Epichloë is a genus of filamentous fungal endophytes that has co-evolved with cool-season grasses with which they form long-term, symbiotic associations. The most agriculturally important associations for pasture persistence for grazing livestock are those between asexual vertically transmitted Epichloë strains and the pasture species, perennial ryegrass, and tall fescue. The fungus confers additional traits to their host grasses including invertebrate pest deterrence and drought tolerance. Selected strains of these mutualistic endophytes have been developed into highly efficacious biocontrol products and are widely utilized within the Americas, Australia, and New Zealand for pasture persistence. Less publicized is the antagonism Epichloë endophytes display towards multiple species of saprophytic and pathogenic microbes. This opinion piece will review the current literature on antimicrobial properties exhibited by this genus of endophyte and discuss the reasons why this trait has historically remained a research curiosity rather than a trait of commercial significance.

5.
Front Plant Sci ; 12: 777354, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069633

RESUMO

Grazing ruminants contribute to global climate change through enteric methane and nitrous oxide emissions. However, animal consumption of the plant polyphenolics, proanthocyanidins, or condensed tannins (CTs) can decrease both methane emissions and urine nitrogen levels, leading to reduced nitrous oxide emissions, and concomitantly increase animal health and production. CTs are largely absent in the foliage of important temperate pasture legumes, such as white clover (Trifolium repens), but found in flowers and seed coats. Attempts at enhancing levels of CT expression in white clover leaves by mutagenesis and breeding have not been successful. However, the transformation of white clover with the TaMYB14-1 transcription factor from Trifolium arvense has resulted in the production of CTs in leaves up to 1.2% of dry matter (DM). In this study, two generations of breeding elevated foliar CTs to >2% of DM. The CTs consisted predominantly of prodelphinidins (PD, 75-93%) and procyanidins (PC, 17-25%) and had a mean degree of polymerization (mDP) of approximately 10 flavan-3-ol subunits. In vitro studies showed that foliar CTs were bound to bovine serum albumin and white clover proteins at pH 6.5 and were released at pH 2.-2.5. Using rumen in vitro assays, white clover leaves containing soluble CTs of 1.6-2.4% of DM significantly reduced methane production by 19% (p ≤0.01) and ammonia production by 60% (p ≤ 0.01) relative to non-transformed wild type (WT) controls after 6 h of incubation. These results provide valuable information for further studies using CT expressing white clover leaves for bloat prevention and reduced greenhouse gas emissions in vivo.

6.
J Fungi (Basel) ; 6(4)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33261217

RESUMO

The relationship between Epichloë endophytes found in a wide range of temperate grasses spans the continuum from antagonistic to mutualistic. The diversity of asexual mutualistic types can be characterised by the types of alkaloids they produce in planta. Some of these are responsible for detrimental health and welfare issues of ruminants when consumed, while others protect the host plant from insect pests and pathogens. In many temperate regions they are an essential component of high producing resilient tall fescue and ryegrass swards. This obligate mutualism between fungus and host is a seed-borne technology that has resulted in several commercial products being used with high uptake rates by end-user farmers, particularly in New Zealand and to a lesser extent Australia and USA. However, this has not happened by chance. It has been reliant on multi-disciplinary research teams undertaking excellent science to understand the taxonomic relationships of these endophytes, their life cycle, symbiosis regulation at both the cellular and molecular level, and the impact of secondary metabolites, including an understanding of their mammalian toxicity and bioactivity against insects and pathogens. Additionally, agronomic trials and seed biology studies of these microbes have all contributed to the delivery of robust and efficacious products. The supply chain from science, through seed companies and retailers to the end-user farmer needs to be well resourced providing convincing information on the efficacy and ensuring effective quality control to result in a strong uptake of these Epichloë endophyte technologies in pastoral agriculture.

7.
J Insect Sci ; 20(2)2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32322881

RESUMO

New Zealand's intensive pastures, comprised almost entirely introduced Lolium L. and Trifolium L. species, are arguably the most productive grazing-lands in the world. However, these areas are vulnerable to destructive invasive pest species. Of these, three of the most damaging pests are weevils (Coleoptera: Curculionidae) that have relatively recently been controlled by three different introduced parasitoids, all belonging to the genus Microctonus Wesmael (Hymenoptera: Braconidae). Arguably that these introduced parasitoids have been highly effective is probably because they, like many of the exotic pest species, have benefited from enemy release. Parasitism has been so intense that, very unusually, one of the weevils has now evolved resistance to its parthenogenetic parasitoid. This review argues that New Zealand's high exotic pasture pest burden is attributable to a lack of pasture plant and natural enemy diversity that presents little biotic resistance to invasive species. There is a native natural enemy fauna in New Zealand that has evolved over millions of years of geographical isolation. However, these species remain in their indigenous ecosystems and, therefore, play a minimal role in creating biotic resistance in the country's exotic ecosystems. For clear ecological reasons relating to the nature of New Zealand pastures, importation biological control can work extremely well. Conversely, conservation biological control is less likely to be effective than elsewhere.


Assuntos
Controle de Insetos , Controle Biológico de Vetores , Vespas/fisiologia , Gorgulhos/parasitologia , Animais , Espécies Introduzidas , Nova Zelândia
8.
J Agric Food Chem ; 68(10): 2927-2939, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-31241924

RESUMO

Condensed tannins (CT) are highly desirable in forage as they sequester dietary protein and reduce bloat and methane emissions in ruminants. However, the widely used forage legume white clover (Trifolium repens) only produces CTs in flowers and trichomes and at levels too low to achieve therapeutic effects. Genetic transformation with transcription factor Ta-MYB14-1 from Trifolium arvense was effective in inducing CTs to 0.6% of leaf dry matter. CT synthesis has been elevated further by crossing the primary white clover transgenic line with wild type genotypes producing the related phenylpropanoids, anthocyanins. CT levels in leaves were highest under the anthocyanin leaf marks associated with the "red midrib" trait; however, there was no evidence for CT accumulation in leaf sections with the "red V" anthocyanin marking. Ta-MYB14-1 was stably inherited in two generations of crosses, and T2 progeny produced up to 3.6-fold higher CTs than the T0 parent. The profile of small CT oligomers such as dimers and trimers was consistent in T0, T1, T2, and BC2 progeny and consisted predominantly of prodelphinidins (PD), with lesser amounts of procyanidins (PC) and mixed PC:PD oligomers.


Assuntos
Proteínas de Plantas/genética , Proantocianidinas/análise , Fatores de Transcrição/genética , Trifolium/química , Melhoramento Vegetal , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Proantocianidinas/metabolismo , Fatores de Transcrição/metabolismo , Trifolium/genética , Trifolium/metabolismo
9.
Appl Microbiol Biotechnol ; 104(3): 1013-1034, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31858191

RESUMO

The whole organisms can be packaged as biopesticides, but secondary metabolites secreted by microorganisms can also have a wide range of biological activities that either protect the plant against pests and pathogens or act as plant growth promotors which can be beneficial for the agricultural crops. In this review, we have compiled information about the most important secondary metabolites of three important bacterial genera currently used in agriculture pest and disease management.


Assuntos
Bactérias/metabolismo , Agentes de Controle Biológico , Metabolismo Secundário , Agricultura/métodos , Bacillus/metabolismo , Produtos Agrícolas , Controle Biológico de Vetores , Pseudomonas/metabolismo , Serratia/metabolismo
10.
Appl Microbiol Biotechnol ; 103(23-24): 9287-9303, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31707442

RESUMO

Synthetic chemical pesticides have been used for many years to increase the yield of agricultural crops. However, in the future, this approach is likely to be limited due to negative impacts on human health and the environment. Therefore, studies of the secondary metabolites produced by agriculturally important microorganisms have an important role in improving the quality of the crops entering the human food chain. In this review, we have compiled information about the most important secondary metabolites of fungal species currently used in agriculture pest and disease management.


Assuntos
Anti-Infecciosos/metabolismo , Agentes de Controle Biológico/metabolismo , Produtos Agrícolas/microbiologia , Fungos/metabolismo , Metabolismo Secundário , Agricultura , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Agentes de Controle Biológico/química , Agentes de Controle Biológico/farmacologia , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Fungos/classificação , Controle Biológico de Vetores , Praguicidas/química , Praguicidas/metabolismo , Praguicidas/farmacologia
11.
FEMS Microbiol Ecol ; 92(12)2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27624083

RESUMO

This minireview highlights the importance of endophytic fungi for sustainable agriculture and horticulture production. Fungal endophytes play a key role in habitat adaptation of plants resulting in improved plant performance and plant protection against biotic and abiotic stresses. They encode a vast variety of novel secondary metabolites including volatile organic compounds. In addition to protecting plants against pathogens and pests, selected fungal endophytes have been used to remove animal toxicities associated with fungal endophytes in temperate grasses, to create corn and rice plants that are tolerant to a range of biotic and abiotic stresses, and for improved management of post-harvest control. We argue that practices used in plant breeding, seed treatments and agriculture, often caused by poor knowledge of the importance of fungal endophytes, are among the reasons for the loss of fungal endophyte diversity in domesticated plants and also accounts for the reduced effectiveness of some endophyte strains to confer plant benefits. We provide recommendations on how to mitigate against these negative impacts in modern agriculture.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Produção Agrícola/métodos , Endófitos/metabolismo , Fungos/metabolismo , Poaceae/microbiologia , Adaptação Fisiológica , Animais , Antibacterianos/metabolismo , Ecossistema , Inseticidas/metabolismo , Gado/fisiologia , Doenças das Plantas/prevenção & controle , Simbiose , Compostos Orgânicos Voláteis/metabolismo
12.
FEMS Microbiol Ecol ; 92(8)2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27222223

RESUMO

Endophytes associate with the majority of plant species found in natural and managed ecosystems. They are regarded as extremely important plant partners that provide improved stress tolerance to the host compared with plants that lack this symbiosis. Fossil records of endophytes date back more than 400 million years, implicating these microorganisms in host plant adaptation to habitat transitions. However, it is only recently that endophytes, and their bioactive products, have received meaningful attention from the scientific community. The benefits some endophytes can confer on their hosts include plant growth promotion and survival through the inhibition of pathogenic microorganisms and invertebrate pests, the removal of soil contaminants, improved tolerance of low fertility soils, and increased tolerance of extreme temperatures and low water availability. Endophytes are extremely diverse and can exhibit many different biological behaviours. Not all endophyte technologies have been successfully commercialised. Of interest in the development of the next generation of plant protection products is how much of this is due to the biology of the particular endophytic microorganism. In this review, we highlight selected case studies of endophytes and discuss their lifestyles and behavioural traits, and discuss how these factors contribute towards their effectiveness as biological control agents.


Assuntos
Bactérias/crescimento & desenvolvimento , Agentes de Controle Biológico/farmacologia , Endófitos/crescimento & desenvolvimento , Fungos/crescimento & desenvolvimento , Plantas/microbiologia , Simbiose/fisiologia , Adaptação Fisiológica , Fenômenos Fisiológicos Bacterianos , Ecossistema , Endófitos/fisiologia , Fungos/fisiologia , Desenvolvimento Vegetal , Solo , Microbiologia do Solo
13.
Trends Biotechnol ; 30(5): 250-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22336383

RESUMO

Biopesticides based on living microbes and their bioactive compounds have been researched and promoted as replacements for synthetic pesticides for many years. However, lack of efficacy, inconsistent field performance and high cost have generally relegated them to niche products. Recently, technological advances and major changes in the external environment have positively altered the outlook for biopesticides. Significant increases in market penetration have been made, but biopesticides still only make up a small percentage of pest control products. Progress in the areas of activity spectra, delivery options, persistence of effect and implementation have contributed to the increasing use of biopesticides, but technologies that are truly transformational and result in significant uptake are still lacking.


Assuntos
Controle Biológico de Vetores/métodos , Controle Biológico de Vetores/tendências , Biotecnologia/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...